MT1000A MU100010A Network Master Pro Operation Manual

First Edition

For safety and warning information, please read this manual before attempting to use the equipment. Keep this manual with the equipment.

ANRITSU CORPORATION

Document No. M-W3682AE-1.0

MT1000A/MU100010A Network Master Pro Operation Manual

25 June 2014 (First Edition)

© Copyright 2014, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Denmark

About This Manual

The documentation for MT1000A Network Master Pro applies to the instrument with the MU100010A 10Gig Multirate Module installed. This operation manual describes both the basic operation of the instrument as well as the operations available via interface options and predefined applications/tests.

MT1000A/MU100010A Network Master Pro Operation Manual (this manual)

Operations for the MT1000A Network Master Pro mainframe with 10G Multirate module (MU100010A) are described.

MT1000A/MU100010A Network Master Pro Quick Reference Guide

A printed quick user's guide that introduces the basic operation of the instrument.

MT1000A/MU100010A Network Master Pro Command Based Remote Control Operation Manual

Operations of the command-based Remote Control function are described.

Manual structure

The contents of the manual is structured in the following way:

Chapter 1 - Introduction
Chapter 2 - Configuration
Chapter 3 - Man-Machine-Interface
Chapter 4 - Graphical User Interface
Chapter 5 - SDH/SONET/PDH/DSn Applications
Chapter 6 - Ethernet Application
Chapter 7 - OTN Applications
Chapter 8 - Specifications

Chapter 9 - Support

Chapter 4 consists of a general introduction to the GUI. Chapters 5-7 contain descriptions of each screen, sub-screen and major dialog. The descriptions are provided in the following order:

Setup and result screens for each application. The applications are described in the same order as they appear on the application selector screen.

Ports setup screens and status information for each interface type.

Sub-screens and dialogs are described under the main screen from which they are activated/launched.

This operation manual assumes the reader has the following basic knowledge:

Ethernet communications, SDH/SONET communications

Optical communications, handling optical parts

Table of Contents

0 Table of Contents	4
 1 Introduction 1.1 Mainframe 1.2 10G Multirate Module (MU100010A) 1.3 Symbols and Conventions 1.3.1 Symbols Used in Manual 1.3.2 Safety Symbols Used on Equipment 1.3.3 Notes 1.3.4 Hints 1.3.5 Option 1.4 Warnings 1.5 Cautions 1.5.1 Cautions against Computer Virus Infection 1.6 Precautions 1.6.1 ESD (Electrostatic Discharge) 1.6.2 Optical Surfaces 1.6.3 Cautions on Handling Optical Fiber Cables 1.6.4 Ventilation 1.6.5 Countries and Regions Permitting WLAN Use 	 13 14 15 16 16 16 16 16 17 18 20 20 22 22 22 23 24 24
 2 Configuration 2.1 Delivered Accessories 2.1.1 Standard Accessories 2.1.2 Optional Accessories 2.2 Mains Power Adapter 2.2.1 Connecting Mains Power Adapter 2.3 Rechargeable Battery 2.3.1 Installing or Replacing Battery 2.3.2 Charging Battery in Fast Mode 2.3.3 Charging Battery in Normal Mode 2.3.4 Battery Status Information 2.4 Measurement Cables 2.4.1 Connecting Measurement Cables 2.5 Support Stand and Carrying Strap 2.5.1 Support Stand 2.5.2 Carrying Strap and Handle 	 25 26 26 27 28 29 29 30 31 31 31
 3 Man-Machine-Interface 3.1 Touch Screen Display 3.2 Key Operation 3.2 Key Operation 3.2.1 Power Button 3.3 Connector Panel 3.3.1 Test Interfaces 3.3.2 Service Interfaces 3.4 Command-Based Remote Control 3.5 External GPS Receiver 3.5.1 Activating the GPS receiver 3.5.2 Using the GPS service 	35 36 37 37 39 39 39 41 42 42 42
4 Graphical User Interface 4.1 General Handling of the GUI 4.1.1 GUI Concept 4.1.2 Navigating in the GUI 4.1.3 Layout of the GUI Screens 4.1.4 Lamp Indication of Alarm/Error Status	43 44 44 46 50

4	 4.1.5 Keypads for Entering Text in Fields 4.1.6 The User Pattern Editor 4.1.7 Prompts to Confirm Dependencies .2 Toolbars 4.2.1 Instrument Toolbar 4.2.2 Application Toolbar .3 Startup and Switch-off Sequences 4.3.1 Instrument Startup 4.3.2 Application Startup 4.3.3 Accessing Previous Tests and Test Results 4.3.4 Closing an Application 4.3.5 Switching Off the Instrument 	51 52 53 54 64 68 68 68 68 68 69 69
5 S	DH/SONET/PDH/DSn Applications .1 SDH Setup and Status	71 72
J	511 Transmitter Setun	72
	5111 Physical Setup	72
	5.1.1.2 SDH Frame Setup	73
	5.1.2 Receiver Setup	77
	5.1.2.1 Physical Setup	77
	5.1.2.2 SDH Frame Setup	77
	5.1.3 Status Information	78
	5.1.3.1 Status Summary	78
	5.1.3.2 Physical Details	79
	5.1.3.3 Alarms and Errors	80
	5.1.3.4 OH capture	81
	5.1.3.5 THOURIY SCAN	82 83
5	2 SONET Setun and Status	84
Ŭ	5.2.1 Transmitter Setup	84
	5.2.1.1 Physical Setup	84
	5.2.1.2 SONET Frame Setup	85
	5.2.2 Receiver Setup	89
	5.2.2.1 Physical Setup	89
	5.2.2.2 SONET Frame Setup	89
	5.2.3 Status Information	90
	5.2.3.1 Status Summary	90
	5.2.3.2 Physical Details	91
	5.2.3.3 Alarms and Errors	91
	5.2.3.4 OFT Capule	92
	5.2.3.6 Transceiver	92
5	.3 E1 Setup and Status	93
-	5.3.1 Transmitter Setup	93
	5.3.1.1 Physical Setup	93
	5.3.1.2 E1 Signal Setup	94
	5.3.2 Receiver Setup	98
	5.3.2.1 Physical Setup	98
	5.3.2.2 E1 Signal Setup	99
	5.3.3 Status Information	101
	5.3.3.1 Status Summary	101
	5.3.3.2 Mysical Details 5.3.3.3 Alarms and Errors	101 102
	5.5.5.5 Alarms and ETUIS 5.3.5 Alarment	102 103
	5.3.3.5 CAS	103
	5.3.3.6 Traffic	105
5	.4 DS1/J1 Setup and Status	107
	5.4.1 Transmitter Setup	107
	•	

5.4.1.1 Physical Setup	107
5 4 1 2 DS1/11 Signal Setup	108
E 42 Deceiver Setup	111
5.4.2 Receiver Setup	
5.4.2.1 Physical Setup	111
5.4.2.2 DS1/J1 Signal Setup	111
5.4.3 Status Information	113
5 4 3 1 Status Summary	113
5 4 2 2 Physical Dotails	111
	114
5.4.3.3 Alarms and Errors	114
5.4.3.4 CAS	115
5.5 E3 Setup and Status	117
5.5.1 Transmitter Setun	117
5 5 1 1 Dhysical Setun	117
5.5.1.1 Thysical Setup	110
5.5.1.2 E3 Signal Semp	118
5.5.2 Receiver Setup	119
5.5.2.1 Physical Setup	119
5.5.2.2 E3 Signal Setup	119
553 Status Information	120
E E 2 1 Status Summany	120
5.5.5.1 Status Summary	120
5.5.3.2 Physical Details	121
5.5.3.3 Alarms and Errors	121
5.6 DS3 Setup and Status	123
5.6.1 Transmitter Setun	123
5.6.1.1 Dhysical Setup	123
E 6 1 2 DC2 Signal Satur	123
5.0.1.2 Dos Signal Selup	124
5.6.2 Receiver Setup	125
5.6.2.1 Physical Setup	125
5.6.2.2 DS3 Signal Setup	125
5.6.3 Status Information	126
5631 Status Summary	126
5 6 3 2 Physical Details	127
E 6 2 2 Alormo and Erroro	120
5.0.3.3 Aldrins and Errors	128
5.6.3.4 Alignment	128
5.7 E4 Setup and Status	130
5.7.1 Transmitter Setup	130
5.7.1.1 Physical Setup	130
5712 F4 Signal Setun	131
5.7.2 Decoiver Setup	121
5.7.2 Receiver Semp	131
5.7.2.1 Physical Setup	131
5.7.2.2 E4 Signal Setup	132
5.7.3 Status Information	133
5.7.3.1 Status Summary	133
5732 Physical Details	133
5.7.2.2 Alorme and Errore	124
5.7.3.5 Alathis and Endis	134
5.8 APS	136
5.8.1 Ports Setup and Status	136
5.8.2 Test Setup	136
5.8.2.1 Threshold	136
583 Test Results	137
5.0.0 Test Nesdia	127
5.0.3.1 Summary	107
5.8.3.2 Details for APS	137
5.8.3.3 Protocol interpretation	138
5.9 BERT	140
5.9.1 Ports Setup and Status	140
5.9.2 Test Setup	140
5921 Control	1/0
5022 Thresholds	1 / 0
5.3.2.2 THICSHUUS	142
5.9.3 TEST RESULS	143

5.9.3.1 Summary 5.9.3.2 Pointer Movement 5.9.3.3 Statistics 5.10 RTD	143 144 145 149
5.10.1 Ports Setup and Status	149
5.10.2 Test Setup	149
5.10.2.1 Control	149
5.10.2.2 Threshold	150
5.10.3 Test Results	150
5.10.3.1 Summary	150
5.10.3.2 Detailed	150
6 Ethernet Applications	152
6.1 Ethernet Setup and Status	153
6.1.1 Physical Port Setup	153
6.1.1.1 Port configuration parameters	153
6.1.1.2 Port Setup (detailed mode)	155
6.1.2 Ethernet Frame Setup	157
6.1.2.2 Sween	177 172
0.1.2.2 Swap 6.1.2.2 Sottings	172 172
6.1.2.3 Semilys	175
6.1.2.4 SUICE 6.1.2.5 IEEE 1599v2	175
6.1.2.5 ILLE 1500V2	182
6.1.2.0 OAW 6.1.2.7 Eiltor	102
6.1.3 Status Information	192
6131 Status Summary	194
6 1 3 2 Physical Details	194
6 1 3 3 Interface	196
6 1 3 4 SyncE	197
6135 IEFE 1588v2	197
6.1.3.6 OAM	199
6.1.3.7 Transceiver	201
6.2 BERT	203
6.2.1 Ports Setup and Status	203
6.2.2 Test Setup	203
6.2.2.1 Control	203
6.2.2.2 Generator	205
6.2.2.3 Stream	205
6.2.2.4 Thresholds	207
6.2.3 Test Results	209
6.2.3.1 Summary	209
6.2.3.2 IEEE1588v2 Log	211
6.2.3.3 OAM Log	211
6.2.3.4 Statistics	212
6.3 Cable	215
6.3.1 Test Setup	215
6.4 Mon/Gen	217
6.4.1 Ports Setup and Status	217
6.4.2 Test Setup	217
6.4.2.1 Control	217
6.4.2.2 Generator	218
6.4.2.3 Streams	219
6.4.2.4 Inresholds	221
6.4.3 Test Results	221
6.4.3.1 Summary	221
6.4.3.2 IEEE1588V2 LOg	223
6.4.3.3 OAM Log	223

6 1 3 1 Statistics	223
6 5 Daes Through	223 227
6 E 1 Dorto Sotup and Status	221
0.5.1 Ports Setup and Status	227
6.5.2 Test Semp	227
6.5.2.1 Control	227
6.5.2.2 Thresholds	229
6.5.3 Test Results	229
6.5.3.1 Summary	229
6.5.3.2 OAM Log	230
6.5.3.3 Statistics	230
6.6 Ping	231
6.6.1 Ports Setup and Status	231
6.6.2 Test Setup	231
6.6.3 Test Results	232
6.6.3.1 Summary	232
6.6.3.2 IEEE1588v2 Log	232
6.6.3.3 Detailed	232
6.6.3.4 Statistics	233
6.7 Reflector	234
6.7.1 Ports Setup and Status	234
6.7.2 Test Setup	234
6.7.2.1 Control	234
6722 Thresholds	236
673 Test Results	237
6731 Summary	237
6732 Statistics	237
6.8 RFC 2544	238
6.8.1 Ports Setup and Status	238
6.8.2 Test Setun	238
6821 Control	238
6822 Throughput	200
6.8.2.3 Frame Loss	241
6.8.2.4 Throughput and Frame Loss	243
6.9.2.5 Latonov	243
6.9.2.6 Durot	244 245
0.0.2.0 DUISI	243
6.9.2 Toot Doculto	240
6.0.2.1 Summery	247
0.0.3.1 Summary	240
6.8.3.2 Infoughput	248
6.8.3.3 Frame LOSS	249
6.8.3.4 Infougnput and Frame Loss	250
6.8.3.5 Latency	250
6.8.3.6 Burst	251
6.8.3.7 STATISTICS	251
6.8.4 Inroughput Calculation	252
6.9 SAT 1564	253
6.9.1 Ports Setup and Status	253
6.9.2 Test Setup	253
6.9.2.1 Control	253
6.9.2.2 Services	255
6.9.3 Test Results	261
6.9.3.1 Summary	262
6.9.3.2 Configuration Test	262
6.9.3.3 Performance Test	263
6.9.3.4 Statistics	264
6.10 Traceroute	265
6.10.1 Ports Setup and Status	265
6.10.2 Test Setup	265

6.10.3 Test Results	266
6.10.3.1 Summary	266
6.10.3.2 IEEE1588v2 Log	266
6.10.3.3 Statistics	267
7 OTN Applications	268
7.1 OIN Setup and Status	269
7.1.1 Transmitter Setup	269
	269
7.1.1.2 OTUK Frame Setup	270
7.1.1.3 Mapping	271
7.1.1.4 Overhead	273
7.1.1.5 IP/IS	281
7.1.1.6 GFP-1	281
7.1.2 Receiver Setup	282
7.1.2.1 Physical Setup	282
7.1.2.2 OTOK Frame Setup	282
7.1.2.3 IP/IS	284
7.1.2.4 TH detection	284
7.1.2.5 MSIM detection	285
7.1.3 Status Information	286
7.1.3.1 Status Summary	286
7.1.3.2 Physical Details	286
7.1.3.3 Alarms and Errors	287
7.1.3.4 OH capture	288
7.1.3.5 Tributary scan	289
7.1.3.6 Transceiver	291
7.2 APS	292
7.2.1 Ports Setup and Status	292
7.2.2 Test Semp	292
7.2.2.1 THESHOUS	292
7.2.3 Test Results	293
7.2.3.1 Suthinary	293
	293 205
7.3 DENI 7.3.1 Ports Setun and Status	295
7.3.2 Test Setup	205
7.3.2 Test Setup	295
7 3 2 2 Thresholds	207
7 3 3 Test Results	208
7 3 3 1 Summary	298
7 3 3 2 Statistics	299
7 4 BTD	301
7 41 Ports Setup and Status	301
7 42 Test Setup	301
7421 Control	301
7 4 2 2 Threshold	302
7 43 Test Results	302
7 4 3 1 Summary	302
7.4.3.2 Detailed	303
8 Specifications	304
8.1 MT1000A	305
8.1.1 Configuration	305
8.1.2 External Interfaces	305
8.1.3 Other Interfaces	306
8.1.4 Environment Performance	306
8.1.5 Mechanical Performance	306

8.2 MU100010A, 10 G Multirate Module 8.2.1 Configuration 8.2.2 External Interfaces 8.2.3 Ethernet Measurements 8.2.4 SDH/SONET/PDH 8.2.4.1 SDH 8.2.4.2 SONET 8.2.4.3 PDH 8.2.5 OTN 8.2.5.1 OTN Setup 8.2.5.2 OTN Stimuli 8.2.5.3 OTN Measurement 8.2.6 Environment Performance 8.2.7 Mechanical Performance 8.3 Optical Modules	307 307 308 311 318 319 322 325 327 327 327 328 329 330 330 331
9 Support	333
9.1 Maintenance and Cleaning	334
9.1.1 Maintenance	334
9.1.2 Cleaning	334
9.2 Support and Service Assistance	335
9.2.1 Before you obtain assistance	335
9.2.2 Obtaining Support or Service Assistance	335
9.3 Transporting and Disposal	330
9.3.1 Repackaying 9.3.2 Transporting	336
9.3.3 Disposal	336
9.4 Special Information	337
9.4.1 Equipment Certificate	337
9.4.2 Anritsu Warranty	337
9.4.3 Anritsu Corporation Contact	337
9.4.4 Licensing Information	338
9.4.5 Availability of Source Code	338
9.5 GNU License Document	339
9.6 EULA LICENSE DOCUMENT	340
9.7 CE Comornity Marking 9.7.1 Product Model	340 3/8
972 Applied Directive	348
9.7.3 Applied Standards	348
9.7.4 Authorized Representative	348
9.7.5 CE Declaration	349
9.8 C-Tick Conformity Marking	350
9.8.1 Product Model	350
9.8.2 Applied Standards	350
9.9 Laser Safety	351
9.9.1 Laser Salety Classifications	351
993 Laser Radiation Markings	353
9.10 Wireless Certification	354
9.10.1 Japan MIC	354
9.10.2 North America (USA FCC and Canada IC)	354
9.10.3 Europe CE	355
9.10.4 China SRRC	355
9.10.5 Indonesia SDPPI	356
	356
9.10.7 Singapore IDA	356
9.10.8 Mallanu NTC 9.11 Declarations	350
	337

9.11.1 Notes on Export Management	357
9.11.2 Information for EU and EFTA Customers Only	357
9.11.3 Information for U.S. Customers Only	357
9.11.4 Information for the Chinese Market Only	358

1 Introduction

This chapter provides a general introduction to the instrument, and explains the symbols and conventions used in this manual.

1.1 Mainframe

The MT1000A Network Master Pro (hereafter called *the Network Master* and sometimes *the instrument*) is a battery-powered multipurpose telecommunications test instrument for field use. It is a tool for a wide range of applications from fast first-aid troubleshooting to comprehensive, in-depth analysis of transmission problems. The installed options enable the Network Master to be used both as a full-featured transmission line quality tester and as an advanced signaling analyzer.

Results are easily read from the large color LCD display, where the colors and graphical symbols facilitate interpretation. Together with the touch screen operation, this makes the Network Master very user-friendly in operation. Set-ups supporting particular applications may be stored in the instrument. The instrument has the following interface for data transfer and external communication: LAN interface, *Bluetooth* and three USB ports.

Fault location is greatly facilitated by the high degree of portability of the robust Network Master, allowing measurements to be taken at any suitable measuring point. The instrument is powered by a rechargeable and replaceable intelligent high-capacity Li-lon battery. The Network Master can also be powered via an external mains adapter for long-term measurements.

1.2 10G Multirate Module (MU100010A)

The 10G Multirate module (MU100010A) allows the Network Master to test a large variety of interfaces and systems up to 10 Gbps, like OTN interfaces, Ethernet interfaces, SDH/SONET interfaces and PDH/DSn interfaces. The MU100010A can be configured to have two ports at all rates and interfaces. The instrument is thus ideal for both in-service and out-of-service transmission-quality measurement.

For fast troubleshooting, the Network Master displays alarms and transmission link status on LED icons in its display. The instrument's two ports permit immediate monitoring of the two sides of a line and allow comparison of simultaneously recorded results. 🗥 CAUTION

1.3 Symbols and Conventions

1.3.1 Symbols Used in Manual

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

DANGER This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

WARNING This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

1.3.2 Safety Symbols Used on Equipment

The following safety symbols are used on Anritsu equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

This indicates a note. The contents are described in the box.

These indicate that the marked part should be recycled.

A number of typographical conventions are used for easy spotting of information. Examples below are shown in grey boxes in this section only to indicate that they are 'examples'.

1.3.3 Notes

The Note symbol indicates information, procedures or recommendations that need to be followed to make correct measurements etc. Note text is written in italics to separate the information from the other text elements on a page.

1.3.4 Hints

The Hint symbol indicates information that should be treated as hints, suggestions, recommendations etc. Hint text is written in italics to separate the information from the other text elements on a page.

1.3.5 Option

The Option symbol indicates that the information described covers an option (hardware and software) and that this option must be installed before use. Text is written in italics to separate the information from the other text elements on a page.

1.4 Warnings

This section contains warnings which should be followed to avoid personal injury, product damage, as well as damage to the environment.

- ALWAYS refer to the operation manual when working near locations at which the alert mark shown on the left is attached. If the advice in the operation manual is not followed, there is a risk of personal injury or reduced equipment performance. The alert mark shown on the left may also be used with other marks and descriptions to indicate other dangers.
- Overvoltage Category
 This equipment complies with overvoltage category II defined in IEC 61010. DO NOT connect this equipment to the power supply of overvoltage category III or IV.
- Laser radiation warning NEVER look directly into the cable connector on the equipment nor into the end of a cable connected to the equipment. There is a risk of injury if laser radiation enters the eye.

The Laser Safety label is attached to the equipment for safety use as indicated in "Laser Safety" in Chapter 9.

Repair

A WARNING NO OPERATOR SERVICE-ABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED PERSONNEL. • Only qualified service personnel with a knowledge of electrical fire and shock hazards should service this equipment. This equipment cannot be repaired by the operator. DO NOT attempt to remove the equipment covers or unit covers or to disassemble internal components. In addition, there is a risk of damage to precision components.

Calibration

• The performance-guarantee seal verifies the integrity of the equipment. To ensure the continued integrity of the equipment, only Anritsu service personnel, or service personnel of an Anritsu sales representative, should break this seal to repair or calibrate the equipment. Be careful not to break the seal by opening the equipment or unit covers. If the performance-guarantee seal is broken by you or a third party, the performance of the equipment cannot be guaranteed.

Replacing Battery

• When replacing the battery, use the specified battery and insert it with the correct polarity. If the wrong battery is used, or if the battery is inserted with reversed polarity, there is a risk of explosion causing severe injury or death.

FOR CALIFORNIA USA ONLY

This product contains a CR Coin Lithium Battery which contains Perchlorate Material - special handling may apply, see www.dtsc.ca.gov/hazardouswaste/perchlorate.

- DO NOT short the battery terminals and never attempt to disassemble the battery or dispose of it in a fire. If the battery is damaged by any of these actions, the battery fluid may leak. This fluid is poisonous. DO NOT touch the battery fluid, ingest it, or get in your eyes. If it is accidentally ingested, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, rinse them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.
- DO NOT expose batteries to heat or fire. Do not expose batteries to fire. This is dangerous and can result in explosions or fire. Heating batteries may cause them to leak or explode.
 - This equipment uses a Liquid Crystal Display (LCD). DO NOT subject the equipment to excessive force or drop it. If the LCD is subjected to strong mechanical shock, it may break and liquid may leak. This liquid is very caustic and poisonous. DO NOT touch it, ingest it, or get in your eyes. If it is ingested accidentally, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, rinse them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.

1.5 Cautions

Replacing MemoryThis equipment uses a Poly-carbomonofluoride lithium battery to back up the **Back-up Battery** memory. This battery must be replaced by service personnel when it has reached the end of its useful life; contact the Anritsu sales section or your nearest representative.

Note: The battery used in this equipment has a maximum useful life of 8 years. It should be replaced before this period has elapsed.

The life of the battery will vary depending on the length of equipment usage and the operating environment.

The following conditions may be observed if the battery has expired:

- When power to the equipment is supplied, the time display may no longer match the actual time.
- Parameter and data settings may not be retained when the power to the equipment is cut.

External Storage This equipment uses a USB memory as external storage media for storing data and programs.

If this media is mishandled or becomes faulty, important data may be lost. To prevent this chance occurrence, all important data and programs should be backed-up.

Anritsu will not be held responsible for lost data. Pay careful attention to the following points:

- Never remove the USB memory from the equipment while it is being accessed.
- The USB memory may be damaged by static electric charges.
- Anritsu has thoroughly tested all external storage media shipped with this equipment. Users should note that external storage media not shipped with this equipment may not have been tested by Anritsu, thus Anritsu cannot guarantee the performance or suitability of such media.
- **Lifetime of Parts** The life span of certain parts used in this equipment is determined by the operating time or the power-on time. Due consideration should be given to the life spans of these parts when performing continuous operation over an extended period. The safety of the equipment cannot be guaranteed if component parts are used beyond their life spans. These parts must be replaced at the customer's expense even if within the guaranteed period described in Warranty at the end of this manual.

For details on life-span, refer to the corresponding section in this manual.

LCD: Brightness at 50% after 40,000hrs

• Battery pack Capacity: 70% after 300 charge/discharge cycles

Use in Residential This equipment is designed for an industrial environment. In a residential environment, this equipment may cause radio interference in which case the user may be required to take adequate measures.

Use in Corrosive Exposure to corrosive gases such as hydrogen sulfide, sulfurous acid, and hydrogen chloride will cause faults and failures.

Note that some organic solvents release corrosive gases.

1.5.1 Cautions against Computer Virus Infection

Copying files and data

Only files that have been provided directly from Anritsu or generated using Anritsu equipment should be copied to the instrument.

All other required files should be transferred by means of USB media after undergoing a thorough virus check.

Adding software

Do not download or install software that has not been specifically recommended or licensed by Anritsu.

Network connections

Ensure that the network has sufficient anti-virus security protection in place.

1.6 Precautions

This section contains some precautions which should be followed to avoid damage or malfunction due to incorrect use, handling and transportation of the Network Master.

1.6.1 ESD (Electrostatic Discharge)

Modules and options for the Network Master contain electronic devices that are sensitive to ESD (Electro Static Discharge). Therefore, all ESD sensitive items are delivered from Anritsu in antistatic shielding packages.

Electrostatic discharge during installation can result in destruction or degradation of these devices. The damage may lead to equipment failure later. When you install or remove modules, it is your responsibility to control ESD. To control ESD, take the issues described below into consideration.

Avoid build-up of electrostatic charge

• Keep your workplace clear of any item that can generate electrostatic charges, e.g. all items that are not made of antistatic materials.

Minimize the exposure to ESD

- Keep ESD sensitive items in antistatic shielding packaging as long as possible.
- Do not remove ESD sensitive items from equipment or the antistatic shielding packaging unless you are connected to the equipment with a grounding wrist strap (as described later).
- Return ESD sensitive items to antistatic shielding packaging.

Keep equipment, the ESD sensitive items and yourself at the same static potential

- If your workplace is already prepared for handling ESD sensitive items, then follow your usual procedure. If not, you should follow the procedure below using a ground wrist strap.
- 1. Attach the wrist end of the wrist strap firmly around your wrist and the other end to the equipment chassis or ground plug.
- 2. Keep the wrist strap on while you install or remove ESD sensitive items. Do not remove the wrist strap until the ESD sensitive parts are either installed or returned to the antistatic shielding package.

1.6.2 Optical Surfaces

The optical interfaces - transmitter as well as receiver - are very sensitive to contamination. Be aware that contamination of the optical surfaces may result in severe loss of signal.

To prevent contamination of the optical surfaces, mount protective caps to seal the transmitter/receiver connectors when no fiber optic cables are connected.

Correct functioning of the instrument can only be ensured if optical modules, supplied by Anritsu for the Network Master, are used.

1.6.3 Cautions on Handling Optical Fiber Cables

Optical fiber cables may degrade in performance or be damaged if handled improperly. Note the following points when handling them.

Do not pull the cable when removing the connector.

Doing so may break the optical fiber inside the cable, or remove the cable sheath from the optical connector.

Do not excessively bend, fold, or pinch an optical fiber cable.

Doing so may break the optical fiber inside the cable.

Keep the bend radius of an optical fiber cable at 30 mm or more. If the radius is less, optical fiber cable loss will increase.

▲ CAUTION

Do not excessively pull on or twist an optical fiber cable.

Also, do not hang anything by using a cable. Doing so may break the optical fiber inside the cable.

Be careful not to hit the end of an optical connector against anything hard such as the floor or a desk by dropping the optical fiber cable. Doing so may damage the connector end and increase connection loss.

Do not touch the end of a broken optical fiber cable.

The broken optical fiber may pierce the skin, causing injury.

Do not disassemble optical connectors.

Doing so may cause part to break or the performance to degrade.

1.6.4 Ventilation

The instrument has built-in fans, to prevent the temperature to rise inside the instrument.

Be sure not to block the ventilation holes.

1.6.5 Countries and Regions Permitting WLAN Use

Use of WLAN is restricted in some countries and regions, and illegal use may be punishable under national or local regulations. To avoid violating WLAN regulations, visit the Anritsu website to check where use is allowed.

http://www.anritsu.com/en-US/Products-Solutions/Products/MT1000A.aspx

Note that Anritsu cannot be held liable for any problem arising from WLAN use in other countries and regions.

2 Configuration

This chapter contains information about the included accessories and the basic configuration. You will find information about how to connect the mains adapter, about the battery used and how to charge it.

2.1 Delivered Accessories

The instrument is delivered in a shipment container together with various accessories depending on the order. When unpacking the first time, it is recommended to check these accessories against the list(s) below.

2.1.1 Standard Accessories

The following standard accessories are delivered with the instrument:

J1565A	Line Cord USA
J1566A	Line Cord Europe
J1567A	Line Cord UK
J1568A	Line Cord Australia
J1594A	Line Cord Japan
J1596A	Line Cord Korea
G0309A	AC Adapter
G0310A	LiION Battery
B0690A	Softbag
B0692A	ESD box
Z1746A	Stylus
Z1747A	Carrying Strap
Z1748A	Handle
Z1817A	Utilities ROM
W3681AE	Quick Reference Guide

2.1.2 Optional Accessories

One or more of the following optional accessories may be delivered with the instrument (if included in the order):

B0691A	Hard case
G0324A	Battery Charger
G0325A	GPS receiver
J1570A	Head Set
W3682AE	Operation Manual

2.2 Mains Power Adapter

The Network Master can be powered from the supplied AC mains adapter.

Always use AC mains adapter delivered from Anritsu. Anritsu Part No. G0309A.

2.2.1 Connecting Mains Power Adapter

To connect the mains power adapter to the Network Master, follow the procedure below:

- 1. Insert the mains adapter's DC power plug into the socket connector marked '18V DC'. The DC input connector is located on the right-hand side of Network Master's connector panel.
- 2. Connect the AC plug of the mains adapter to the mains and switch on the mains wall outlet. The power button will flush during booting. Then lit on orange when charging.

2.3 Rechargeable Battery

The Network Master is delivered with a 10.8 V Intelligent Li-lon rechargeable and replaceable battery. The typical operation capacity (with a fully charged battery) will be approximately 4 hours.

Use only original batteries delivered from Anritsu, to prevent the risk of instrument damage or personal injury.

Battery should only be charged at room temperature.

Initial charging The battery will normally be partially or fully discharged on delivery. It is recommended to charge the battery as the first thing after delivery and unpacking. In Stand By Mode, the **ON/OFF** indicator will stop flashing when the battery is fully charged.

If the battery happens not to be used for a longer period of time it is recommended that it contains at least 20% capacity. Charge the battery before storage, if necessary.

Temperature When charging is in process, the temperature of the battery will increase. The intelligence of the battery will ensure that the charging takes place at the correct temperature.

2.3.1 Installing or Replacing Battery

To install or replace the battery in the Network Master, follow the procedure below:

- 1. Disconnect the mains power adapter if it is connected.
- 2. Switch the Network Master **OFF**.
- 3. Place the instrument on its back on a plain surface and turn the lock screw of the battery compartment to match the unlock mark.
- 4. Remove the lid of the battery compartment.
- 5. Pull out the battery from the compartment.

- 6. When installing the battery, note the direction of the battery terminals. With the instrument placed on its back - and the battery compartment in front of you - the terminals should be in the upper left corner.
- 7. Re-install the battery compartment door and tighten the lock screw.

2.3.2 Charging Battery in Fast Mode

Power is supplied from the external AC mains adapter - and the Network Master is switched **OFF** during the charging (Stand By Mode).

To charge the Network Master battery using the fast charge mode, follow the procedure below:

- 1. Switch the Network Master **OFF**.
- 2. Connect the mains adapter, as described in the "Connecting Mains Power Adapter" section.
- **ON/OFF indicator** When connected, the **ON/OFF** indicator will flash after approx. 30 seconds, indicating that charging is in progress. When the flashing stops, the charging is complete. If the battery is defective the **ON/OFF** indicator will also light. Therefore, the best way to check the battery status is to switch on the Network Master and observe the battery information as described in the Instrument toolbar section.

2.3.3 Charging Battery in Normal Mode

Power is supplied from the external AC mains adapter - and the Network Master is switched **ON** during the charging.

A normal charging of the battery is taking place every time the instrument is in use and connected to the mains adapter.

The battery status can be checked in the instrument toolbar (expandable icon toolbar) on the right-hand side of the screen, or in the status line if the battery indicator is displayed there. See the "Battery Status Information" section below.

2.3.4 Battery Status Information

The battery icon is displayed in the status line at the bottom of the screen.

The following icons are used to indicate the current battery status:

Icon indicates that the battery is fully charged. The Network Master is using the AC adapter as power source.

Icon indicates that there is no battery in the Network Master (or the battery is malfunctioning). The Network Master is using the AC adapter as power source.

 ${\sf Icon}$ indicates that the Network Master is using the battery as power source. The AC adapter is not connected.

There is a delay of several seconds before the battery status is updated.

A more detailed battery status information is launched when touching the battery icon. The example in the figure below shows the status screen of a battery during charging.

2.4 Measurement Cables

When connecting the Network Master to the line to be tested or monitored, it is recommended always to use shielded cables of good quality, to avoid the possibility of corrupting the measuring results. For the same reason, the AC adapter, if used, should be connected to the instrument and switched on before starting the measurement.

For connection of the Network Master to different types of equipment, different cables are available. Please contact your Anritsu representative for information.

2.4.1 Connecting Measurement Cables

Measurement cables are connected to the input and output connectors located on the connector panel of the instrument. Various electrical and optical connectors are available.

2.5 Support Stand and Carrying Strap

2.5.1 Support Stand

The Network Master is equipped with a support stand keeping the instrument at a convenient angle during the operation. To extract the stand: pull out the metal bar on rear of the instrument - it automatically stays in the correct position.

Be sure to open a support stand fully. If it does not so, the Network Master will be more likely to tip over. Moreover, the air flow on bottom panel will be insufficient.

2.5.2 Carrying Strap and Handle

The included carrying strap and handle can easily be mounted for your convenience when transporting and/or using the Network Master.

The carrying strap is equipped with hooks for easy installation.

How to attach carrying strap and handle

To attach carrying strap (Z1747A) and handle (Z1748A) to MT1000A Network Master Pro, follow instructions below.

1. Use screw driver and remove the battery lid from MT1000A.

2. Remove the battery pack.

3. Loosen four screws at each corner of MU100010A.

- 4. Separate MT1000A and MU100010A.
- 5. Attach the handle on either right or left side.

6. Detailed photos for upper and lower corner.

7. Remove the buckle cap from the handle and the carrying strap.

8. Mount the carrying strap on both upper corners.

9. Attach MT1000A and MU100010A , insert the battery pack and mount the battery lid with the reverse sequence at the beginning.

3 Man-Machine-Interface

Man-Machine-Interface (MMI) covers the relation between the user and the instrument - in other words: the information you get from the instrument combined with the action you add to the instrument.

The informative part is the TFT display, and the part susceptible to influence is the touch-active layer of the screen. Connections made to the input and output connectors are included in the MMI as well.

3.1 Touch Screen Display

The 9 inch active TFT display with WVGA resolution (800x480 pixels) is used for setups and for presentation of results (that is, for all interaction with the instrument). As the display includes touch screen functionality, it is possible to navigate and operate directly from it.

The touch screen display is constructed to be operated by the tip of your finger or by the included *Stylus* (Anritsu part No. Z1746A). The touch screen surface is made of delicate material and is easily scratched or damaged if handled incorrectly.

Never expose the touch screen to excessive pressure as this may damage its functionality.

Never use sharp objects (e.g. pens, paper clips etc.) to operate the touch screen, as this may damage the surface.

If the touch screen breaks and liquid leaks out, DO NOT touch or ingest the liquid and avoid getting it in your eyes. The liquid may be poisonous.

Only use a soft cloth moisturized with a mild detergent to clean the surface of the touch screen. Be sure to power off and disconnect main power adapter.
3.2 Key Operation

The only physical operator key (the Power button) is described in this section.

3.2.1 Power Button

The Power button on the front panel of the instrument is used to switch power ON and OFF. In addition, the menu used for power-off also contains a few extra options (e.g. to lock the screen).

🔘 Gray: Power off

- Orange flashing (fast): Booting in case of AC operation

- Green flashing: Booting in case of the battery operation

Orange flashing (slow): Charging

Orange: Stand by

Green: Operating

Switching power ON

AC Operation

Connect the mains power adapter to the Network Master. The Network Master flashes the power button in orange during booting. The power button lights in orange after booting.

To start your test, press the power button. The power button lights in green. After a model name is displayed, the Network Master enters Operating status and shows the Application Selector.

Battery Operation

Press the power button. The Network Master shows a model name and flashes the power button in green during booting.

Then, the Network Master enters Operating status and shows the Application Selector.

Switching power OFF

When you press the Power button, a pop-up menu containing **Shut Down** will appear.

Touch the **Shut Down** menu item and then confirm by touching **Yes** in a dialog box.

AC Operation

After you shut the Network Master down, the Network Master goes back to Stand by or Charging state.

The Network Master stays Stand by or Charging state until you disconnect the mains power adapter.

Battery Operation

After you shut the Network Master down, the power goes off.

Forcing power OFF

If it is not possible to power down the Network Master using the power button menu, the following procedure can be used to make an emergency power down.

- 1. Disconnect AC adapter if it is connected.
- 2. Hold the Power button depressed for a couple of seconds.

It is not recommended to force a power-off except in emergencies.

Additional options in power button menu

Apps Switcher

Shows all currently activated applications and allows you to switch among them.

Capture Screen

Saves a screen shot image in .PNG format. The image file will be saved in 'Internal/screens' folder or an attached USB memory stick.

Lock Screen

Locks or unlocks the screen.

3.3 Connector Panel

All connections (both for *test interfaces* and for *service interfaces*) are placed on the connector panel of the Network Master.

The figure below shows the connector panel of the mainframe and MU100010A.

3.3.1 Test Interfaces

The connector panel contains the following port connectors to be used for the tests:

3.3.2 Service Interfaces

All connections concerning the service interfaces are also located on the connector panel:

Audio	This connector is reserved for the future use.
AUX	The AUX connector is used for G0325A GPS Receiver.
Ext Clock	The Ext Clock connector is used for reference clock input.
USB B	The three USB connectors (two connectors type A and one
USB A	connector type B mini) can for example be used for connection of printers with USB interface. Another convenient use of this interface is the exchange of information to and from the instrument.
Ethernet service interface	The Ethernet connector is used for connecting the Network Master to a Local Area Network, e.g. to remotely operate the instrument from a PC.
DC input (18 VDC)	The DC power connector is used for connection of 18 V DC power delivered from the AC Adapter.

3.4 Command-Based Remote Control

Using command-based scripts makes the Network Master a fully automated measurement instrument.

- The Network Master remote control communication functions support the built-in Ethernet service interface.
- Software specifications are in conformity with the IEEE488.2 standard and SCPI version 1999 (Standard Commands for Programmable Instruments).

All commands are described in a separate document:

• MT1000A/MU100010A Network Master Pro, Remote Scripting, Operation Manual (M-W3708AE).

This icon indicates whether the Network Master is controlled by the command-based scripts or not.

3.5 External GPS Receiver

It is possible to connect an external GPS receiver (part No. G0325A) available from Anritsu. The GPS receiver is used for:

- Precise time synchronization, when making one way Frame Transfer Delay measurements as part of the Ethernet Service Activation Test.
- Clock source in an IEEE 1588v2 system
- Timing source for synchronizing Ethernet transmitters
- Reference source for Ethernet bit rate measurements

Connect The 15 pin D-sub connector to the 15 pin AUX connector on the connector panel.

3.5.1 Activating the GPS receiver

The GPS receiver is activated automatically if it has connected to Network Master.

3.5.2 Using the GPS service

One purpose of the external GPS receiver is to provide for precise one way Frame Transfer Delay measurements as part of the Ethernet Service Activation Test.

When the GPS receiver is activated and the active interface is Ethernet, the Network Master will calibrate its internal time base to the ultra precise time signal from the GPS receiver. The calibration process takes approximately 1 minute. After calibration, if the GPS receiver is disconnected (or the GPS signals are lost), the GPS system enters "Holdover" mode. In holdover mode, the accuracy of the Frame Transfer Delay measurement can be maintained for approximately 1 hour. After this time, the GPS system will enter a "Not OK" state.

When Ethernet is not the active interface, holdover mode is not applicable.

For best accuracy, let the Network Master warm up for 5 - 10 minutes before removing the GPS receiver, and keep the surrounding temperature as constant as possible.

4 Graphical User Interface

This chapter provides a general introduction to the graphical user interface (GUI). The descriptions of the screens, sub-screens and major dialog boxes related to specific technologies and applications are placed in separate chapters.

4.1 General Handling of the GUI

The Network Master is equipped with a touch screen display, except for the key to switch the instrument on/off. The operating principle of the graphical user interface (GUI) presented on the touch screen display is that it guides you through all setup steps required for running a specific test and then finally presents you with the test results. You can, however, also navigate back and forth between setup steps and result presentation to re-run a test with new parameter settings if required.

4.1.1 GUI Concept

The GUI can be split up into two functional spaces or levels: the *desktop* and the *workspace*.

- The *desktop* is the entry level which appears after the booting. It consists of the *application selector*, which allows you to start a new application, and the *result file browser*, which allows you to access previously created and stored test results.
- The *workspace* is where you work with a specific application (i.e. set up and run a test and inspect the test results). Your selection on the desktop creates the workspace and loads relevant data into it.

Application selector

The *application selector* loads a new application into the workspace. A new application can be either one of the standard applications provided with the instrument or a previously saved application with partial or full configuration of interface/test setup parameters.

Result file browser

The *result file browser* loads the results and configuration of a previous test into the workspace. This allows you to generate reports from the results and/or to rerun the test (either using the original configuration or with various configuration modifications).

A specific set of resources (i.e. ports) are assigned to a workspace when it is created. More than one workspace can therefore exist at the same time, each assigned to different resources.

4.1.2 Navigating in the GUI

As shown in previous figure, Application selector and desktop have the relation vertically. Application selector and Result file browser have the relation horizontally. Switching screens is navigated based on horizontal and vertical relations.

Horizontal navigation at desktop level

You can switch between the application selector and the result file browser by touching the tab displayed in the bottom right-hand corner and the bottom left-hand corner.

Horizontal navigation within a workspace

In the workspace you can step through the setup by touching the navigation tabs displayed in the bottom corners of the screen. The right-hand tab brings you to the next step in the setup, while the left-hand tab allows you to take a step backwards.

Alternatively, you can use the *screen indicator* at the bottom of the screen to switch between ports setup, test setup and test result.

It is also possible to loop back directly to the ports setup from the test result screen if you need to rerun the test with different settings.

To get from the Test Setup to the Test Result screen during a new test, you must run the test. This is done by touching the 'Start' icon in the Application toolbar, which is the expandable toolbar shown on the right-hand side of the screen. Please refer to the separate <u>Toolbars</u> section for information about the toolbars.

Vertical navigation between desktop and workspace

When an application is currently running, the application selector screen will contain a tab at the bottom which allows you to go directly to the screen last displayed in the application's workspace. Similarly, the result file browser screen will contain a tab at the bottom which brings you to the test result screen of the running application.

From a setup screen you can return to the application selector using the tab at the top of the screen. Test result screens contain a tab at the top which returns you to the result file browser.

4.1.3 Layout of the GUI Screens

The Network Master starts up with a splash screen that shows the GUI **Startup Splash** Screen concept of desktop/workspace and the various screen types. It indicates both application selector and result file browser as entry points.

Status icons There are status icons of the battery and the network connections at bottom of the screen.

> When the network connection is unusable, the red cross (\times) appears on the icon.

Battery status Refer to <u>"Battery Status Information"</u>.

WLAN (when the option is installed.)

Controlled by the remote command

Application Selector

The **Application Selector** screen is the main entry point after startup of the Network Master. From here you can choose which application/test to run: either one of the standard applications or a previously saved pre-configured application.

Applications

l	Applic	ations	Favorites		Utilities	
	OTN	BERT	RTD	APS		
	Ethernet	5AT (Y.1564)	BERT	Mono Mon./Gen.	Pass Through	▶ ◀
	SDH/SONET PDH/DSn	BERT	RTD +	APS		
				0 # 0] 🔿 🎘 V 📑 19	9:59

The icon may be not displyed because icons on screen are limited up to four. You may need to scroll the row of applications to display the relevant icon.

Touching + **OTN** adds OTN layer for SDH/SONET or Ethernet applications.

Aside from the application buttons, the application selector screen also contains a tab for showing/hiding the <u>Instrument toolbar</u> and a navigation tab to the <u>Result File Browser screen</u>.

Favorites

Touching **Favorites** button displays the screen below.

l	Appli	cations	Favorites		Utilities	
	OTN	RTD 2014-05-26@16-57_NA	RTD 2014-05-27@09-25.cf	APS OBT^&(&%##\$%)()_O		
	Ethernet	Cable Test cable05.cfg				-
	SDH/SONET PDH/DSn ∎teotottott ►	RTD OTN-SDH-RTD0530.cfg	BERT pdh_el.cfg			-
			8 RTD	•	🗃 🔿 🎉 🔰 🚺 18:45	

Registering applications

- 1. Go to Application screen by the following method.
 - Touch the **Applications** button and touch an icon to be registered.
 - Return to the workspace by touching the button at bottom.
- 2. Touch the Application Toolbar tab.

- 3. Touch the **Load Save** icon.
- 4. Touch the **File name** field.
- 5. Enter the file name using the dialog box.
- 6. Select Add to Favorites in the Save/Load dialog box.

7. Touch the Save settings button.

Deleting applications

- 1. Hold the touching an icon in Favorites screen until a pop-up menu appears.
- 2. Touch Delete Favorite.
- 3. Touch **Delete** if the confirmation dialog box appears.

Renaming the icon

- 1. Hold the touching an icon in Favorites screen until a pop-up menu appears.
- 2. Touch Rename Favorite.
- 3. Input a new name on the opening dialog box.

Utilities

This screen is planed for the future use.

Result File Browser The **Result File Browser** screen is the other entry point after startup of the Network Master. From here you can access the results of previous tests either for creating PDF reports or for viewing the results directly, or both. Refer to "Accessing Previous Tests and Test Results".

Browses the folder.

Sets the filter of files.

Loads the result and starts the application with view mode.

Loads the result.

Creating the report from the result.

In addition to the buttons for accessing and handling test results, the result file browser also contains a tab for showing/hiding the <u>Instrument toolbar</u> and a navigation tab to the <u>Application Selector screen</u>.

Ports Setup screen The **Ports Setup** screen is the first screen in the workspace. It may contain one or more setup pages, with a row of buttons at the top of the screen allowing you to switch between the pages and between ports (when relevant).

> Navigation Area Application Selecto Port 2 OTU2 - ODTU2.1#1 - OPU0 Ethernet OTU2 - ODTU2.1#1 - OPU0 None FEC Control: RS(255,239) TTI Encoding: ITU-T Mapping LOS Signal Level -2.53 dBr OTN Ш Dummy CH: LOF п Сору -OTU-AIS П x8 SM-BIP8 Ш OTU2 ODU0 OPU0 Τх ODU2 OPU2 ODTU2.1 GEP-T GbE Ethernet Traffic Ш TP #1 OH OH OH capture Tributary Ш Transceive Mon./Gen SETUP RESULT 🕂 🗗 🐄 V 🖪 15 40 TEST Setup Area Status Area

- The *navigation area* at the top of the screen contains a number of buttons representing a structure for the current interface, which allows you to select a specific port, transmitter/receiver and layer.
- The setup area (the main area of the screen) is where the parameters for setting up the interface are displayed. The contents of the area changes depending on what is currently selected in the navigation area.
- The *status area* (to the right of the setup area) shows status information for the currently selected port and layer. You can access more detailed status information from here by touching the status summary boxes and buttons.

It may contain one or more setup pages, with a row of navigation buttons at the top of the screen allowing you to switch between the pages and between ports (when relevant). In addition, the **Ports Setup** screen also contains the expandable <u>Application toolbar</u> and the navigation tabs for horizontal and vertical navigation.

It consists of several "areas":

Test Setup screen The **Test Setup** screen is the second screen in the workspace. It may contain one or more setup pages, with a row of navigation buttons at the top of the screen allowing you to switch between the pages and between ports (when relevant).

Port 1	Port 2	Applica	ation Selector		
Control	Generator		Stream	Thresholds	
BERT Threshold Monitoring	g				
✓ Pattern Errors ———		_	✓ Ethernet		107
🔵 Count 🛛 🔵 Ratio	Ratio[%]		Utilization (%):	< 0.0 %	4
Threshold:	0	ור	Throughput (Mbps):	< 0.0	
			Errored frames:	< 0	
Sequence errors —		_	Collisions:	< 0	?
Threshold:	0		Unicast frames:	< 0	i i
Service disruption		_	Multicast frames:	< 0	
Threshold:	50.000 ms		Broadcast frames:	< 0	
			15 evaluation items enabled		X
_ lotal Frame Difference			Setup		
Difference from:	Port1 Rx				
BERT	SETUP	Ţ	E <u>ST</u> RESULT 💾 🍽	🔿 🕅 🗸 🚺 🕺	

In addition to the various parameters, the **Test Setup** screen also contains the <u>Application toolbar</u> and the navigation tabs for horizontal and vertical navigation.

Test ResultsThe Test Results screen is the last screen in the workspace. It generally
contains several pages, reflecting the progress of the test. Navigation
buttons at the top of the screen will allow you to switch between the pages
and between ports (when relevant).

Port 1	Port 2	Result File Br	owser		
2014-06-03 14:14:22				2014-06-03 14:14:36	
Summary		OAM Log		Statistics 📕	
BER Bit co	unt Error count	Rate	_Ethernet		8
Pattern errors	0	0 N/A	Pass	Details	
Threshold:		0			
Utilization	Pattern errors	Errored Frames			0
51.75e+ 00 6.25e+07	16 30 1E-08 1E-05	A 38 50 62 T			
25e+09 7.5e+09 25e+09 8.75e+0	1E-12 1E-04 1E-14 1E-02	25 75 1 12 88 1	_Pattern		¥,
10+10	15-16 10-00	E a 100 7	PRBS23		
0 tps	nan		- Pattern Error In	sertion	
Service disruption	Avg. Max	c 🕨	Insertion:	Off 🛛	V
Disruption time	N/A	0.0 us	Burst length:	1	
Threshold:		50.000			
BERT	:	SETUP TEST	<u>RESULT</u>	🗃 🤿 🦻 V 📑 14:32	

In addition to the results, whose presentation varies from application to application, the **Test results** screen also contains the <u>Application toolbar</u> and the navigation tabs for horizontal and vertical navigation.

4.1.4 Lamp Indication of Alarm/Error Status

Alarm and error status is indicated by colored Lamp icons. The following colors are used:

•

Red Lamp icon indicates that an alarm has appeared.

Yellow Lamp icon indicates that an error has appeared.

Green Lamp icon indicates a 'no trouble' situation.

Note that the same colors are also used for indication of status in other contexts, e.g. in the display of test results.

Double-ringed icons with history information

The Lamp icons are double-ringed, with the inner ring indicating the current status and the outer ring showing history information (i.e. alarms and errors in the alarm trap since the last reset/clearing of history).

'Error' situation currently, but alarm recorded previously.

'No trouble' situation currently, but alarm recorded previously.

'No trouble' situation currently, but error recorded previously.

The example below shows the Lamp icons used in a screen displayed by selecting alarm and error status on the ports setup screen.

4.1.5 Keypads for Entering Text in Fields

Alphanumerical or purely numerical keypads are used to enter text in fields. By touching the field you launch the related keypad. The layout (i.e. type) of a specific keypad will depend on which type of text is required/valid for the field.

In general, a keypad consists of the character/number keys, a display field showing the current text/number entry, various editing-related keys. For number entries, the minimum and maximum values allowed are also shown. When you launch a keypad from a field, the current field value is shown in the keypad's display field.

Touch **Ok** to accept the new entry and close the keypad.

To close the keypad without accepting the change, touch **Cancel** or touch the "X" symbol in the upper right-hand corner of the keypad.

4.1.6 The User Pattern Editor

The 32-bits and 2048-bits user patterns are specified using the **Pattern Editor**. You can view the pattern in either Hexadecimal, Binary or ASCII format and use either a numpad, an ASCII table or a keyboard to set it up.

								Patt	ern I	Edito	r						;	K)
ſ	View Mo	ode: 🗛	scii 🔻)	Li	ne Wid	th: 16	bytes	•		Byte 1	.2	Row 1	С	ol 12	Cut	Copy	
ř	Anritsu	····														Past	e Clear	Ð
																Clor		
																Tail	1	
																->		6
U.														•				
- 1					_													2
- 1	Num	ad las		vhoard														7
-1		A		ybouro														- C
-1		0		2	3	4	5	6	7	8	9	Δ	R	C	D		E	1
	0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI	
	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US	
	2	SP	!	"	#	\$	%	&	'	()	*	+	,	-		/	
	3	0	1	2	3	4	5	6	1	8	9	:	;	<	=	>	?	
	5	P	0	B	S	т	<u>с</u> Ц	r V	W	X	Y	7	7	L \	1	N .	0	K
	6		a	b	c	d	e	f	a	h	i	i	k	1	m	n	0	
	7	р	q	r	s	t	u	v	w	x	y	z	{	İ	}	~	DEL	
	. · · ·																2	
	Over	write	Ар	ply											Ca	ancel	Ok	

You use the numpad to edit the pattern in the *Hex* and *Bin* view modes, and use either the ASCII table or the keyboard to edit in *ASCII* view mode.

For 2048-bits user patterns, you can use the **Line Width** drop-down menu to specify how the pattern is displayed. The available values are: **2**, **4**, **8**, **16**, **32**, **64 bytes**.

4.1.7 Prompts to Confirm Dependencies

When a parameter change spawns changes elsewhere because of dependencies, you are prompted to accept or reject the change(s). A **Confirm Dependencies** dialog box is displayed, with information about the dependency-related changes.

You can switch whether displaying the Confirm Dependencies dialog box. Refer to <u>Miscellaneous</u> in "Instrument Toolbar" section.

4.2 Toolbars

Two toolbars are available on the right-hand side of the screen: the desktop toolbar (called the *Instrument toolbar*) and the expandable workspace toolbar (called the *Application toolbar*).

- The <u>Instrument toolbar</u> contains general system functions and information (e.g. Instrument configuration, Battery time etc.). It is available directly on the screens related to the desktop, but can also be accessed on the workspace-related screens as a "sub-toolbar" inside the application toolbar.
- The <u>Application toolbar</u> contains application-related functions and information (e.g. Start/Stop test, Test progress etc.). It is available on the screens related to a specific application (i.e. all workspace-related screens), with the *Instrument toolbar* as a sub-toolbar.

4.2.1 Instrument Toolbar

The *Instrument toolbar* is shown in the figure below. When the toolbar is hidden, it is represented by its icon tab in the top right-hand corner of the screen.

The *Instrument toolbar* contains the following functions/status:

- Instrument information
- Configuration
- File manager
- Help
- Resource monitoring

Instrument information

The *Information* icon launches the **System Information** screen. Touch the **Update About Info** button to generate the instrument information.

System Information Network Master Pro: 1.0rc5 RFS: 1.00 SDK: 1.00 Application: SVN Rev 23678 from /branches/V1.0 FPGA: SVN Rev 23313		System Information Controller Information Module(s) Information Software Information Battery Information	5-1 5-1 7
Selftest: 0.34 Install Tools: 0.29		Results	
Boot: 1.00 Uboot: 0.23	•	Update About Info Save To File	
(# 	∦ V ⊡ 12:38	

The following information is presented on the screen:

- System Information
- Controller Information
- Module(s) Information
- Software Information
- Battery Information
- Self Test Results

To save the instrument information in an HTML file, touch the **Save To File** button. This launches another dialog box, where you can specify file name and location. For the icons, refer to "<u>File Manager</u>".

	5	Save System Info	ormation		×
🖬 🖉 🛛					Save File
Name	Nan	me 🗸	Size	Туре	
🕨 🖾 Internal					
🕨 🛄 Usb					
	4			Þ	
File name: ba	ttery_info_0602				
Files of type: HT	ML files (*.html)			▼]	Cancel
				F 🖬 🚿 🕅 🔪	/ 17:33

When there are "NG"s in the self test results, try to reboot Network Master. If "NG"s remain in the self test results, contact an Anritsu Service and Sales office.

Configuration

The *Configuration* icon launches the *Global Configuration* screen. From this screen it is possible to configure both the general instrument settings (such as date/time, password etc.) and various network settings.

General

The **General** screen contains the following configuration options:

General		Network	
LCD Brightness	Power Auto Backlight Off: 30 secs Auto Power Off: Off	Touch Screen Calibration	-9
Language	Speaker	Auto Save	
English	On Off	On	?
System Password Screen Lock Protection: Off Modifications Protection: Off	Date/Time Wed, June 04, 2014	Miscellaneous Logging Level: Debug Show Confirmations: On	č
Restore Applications Defaults	Execute Self Test		
		🔐 🗅 V 💽 11:24	

LCD Brightness

Allows you to change the screen brightness by using the slide bar.

Power

Allows you to specify auto backlight duration and auto power-off time.

These settings are applied for the battery operation only.

Touch Screen Calibration

Allows you to calibrate the touch screen. Touch **OK** in the dialog box to start the calibration.

Save the measurement results or settings before the touch screen calibration. Network Master reboots after the touch screen calibration. The measurement data which is not saved will be lost.

Language

Allows you to select another language for the instrument.

Speaker

Selecting the checkbox enables/disables the speaker.

Auto Save

Allows you to specify saving method of the measurement results.

- **Prompt**: Confirms saving results or not after a test.
- **On**: Saves results to the file automatically without notification every time a test ends.
- **None**: Does not save results. The results data are discarded if you do not save the data manually.

System Password

Allows you to enable/disable password protection and to specify a new password. When the password protection is enable, starting applications and the settings change of applications are protected.

Change System Password
Enable Screen Lock Protection
Enable Modifications Protection
Enter old password: *****
Enter new password: *****
Re-enter new password: *****
Defaults Cancel OK

To change/set the password, select the one or more checkboxes and then touch the password buttons. A numeric keypad is displayed.

	Enter	old pass	word	×
CLR	7	8	9	
1 0-	4	5	6	-H
÷	1	2	3	->
Paste		0		Copy All
Display Pa	ssword	Cance		Ok

To see the numbers as you type them on the keypad, select the **Display Password** checkbox.

The password is set to 0614 as factory default.

Date/Time

Allows you to change the system date and time. Select a part in **New Time** or **New Date** field and touch the up/down button.

Miscellaneous

Logging Level allows you to specify the logging level. Select **Off** always. Other options are used for the service use.

Show Confirmations allows you to specify whether showing the prompts to confirm dependencies.

Change Miscellaneous
Logging Level: Off
Show Confirmations: On
Defaults Cancel OK

Restore Applications Defaults

Touching this button restores each application settings to defaults.

Execute Self Test

Touching this button starts the self test.

Save the measurement results or settings of the running applications before executing self test. Network Master reboots when executing self test. The measurement data which is not saved will be lost.

The **Network** screen contains the following configuration options for the instrument's network connection:

General		Network	
Ethernet	WLAN	Bluetooth	-9 5-1
Remote Control	VNC		► ?
			礿
		🔐 🗅 🗢 🛿 V 🗾 16 30	

Network

Ethernet

Allows the instrument to be connected to the Ethernet either via dynamic addressing (*DHCP*) or via manual specification of IP address, subnet mask and default gateway. These settings are applied for the <u>Ethernet service</u> interface.

Change Ethernet Settings
Ethernet Enabled DHCP
IP Address: 192.168.10.127
Subnet Mask: 255.255.255.0
Default Gateway:
Connection Status: Off
Defaults Cancel OK

This icon indicates the link status of the Ethernet service interface.

WLAN

Allows the instrument to connect to a network via Wireless Local Area Network (WLAN). Note that if WLAN is enabled, the instrument cannot connect to the Ethernet via the Ethernet setting mentioned above.

This feature requires an option (MT1000A-003).

General	_		Netv	vork	
		WLAN Setup			
Enable WLAN:		Event History	Add Network	Edit Network	
Interface:	wlan0				.
Network:					
Re	tatus: INACTIVE				2
Last mes	sage:				•
Authentic	ation:				×
Encry	otion:				
	SSID:				
В	SSID:				
IP add	ress:				
	Connect	Disconnect	Scan	Close	
				📑 🔿 🎘 V 📑 18 03	

- 1. Touch the **WLAN** button. WLAN Setup dialog box appears.
- 2. Touch the **Scan** button. Scan results are displayed.
- 3. Select the network from scan results and touch the **View** button.
- 4. Touch the **Add Network** button. Specify relevant items of network, touch the **Add** button.
- 5. Confirm that Status in WLAN Setup dialog box changes to **Connected**.

	Add Network	×	
SSID:			-0
Authentication:	Plaintext or static WEP		-
Encryption:	WEP		
PSK:			
EAP method:	PSK		
Identity:			2
Password:			*
CA certificate:			
_WEP keys			
	0		
	0		
	Add Remove Cancel	 ,	

When option is installed, this icon indicates the connection status of the WLAN.

To edit the settings of the current network, touch the **Edit Network** button. The **Event History** button is available to diagnose the WLAN connection.

Bluetooth

Allows the instrument to use a Bluetooth connection.

This feature requires an option (MT1000A-003).

- Enable Bluetooth: Enables using the Bluetooth.
- Make visible: Allows to discover Network Master from other Bluetooth devices.
- Share files using FTP: Allows to share files stored in Network Master via Bluetooth. Login account and password are not required for the FTP connection. Shared folder in Network Master is "/property/mnt/internal".

When option is installed, this icon indicates the enable or disable of the Bluetooth.

Remote Control

Allows you to specify a TCP port for the command-based remote control of the instrument.

VNC

Allows remote control of the instrument via Virtual Network Computing (VNC).

This icon indicates the enable or disable of the VNC. Touching this icon allows switching VNC enable or disable.

File Manager

The *File Manager* icon launches the file manager screen. From this screen it is possible to configure the instrument's internal file storage facility as well as to perform all kinds of file transactions, both internally and from/to any external file storage source (USB memory stick etc.).

Moves to the home folder.

Creates a new folder.

Edits the file name or the folder name.

 \mathbf{X} Deletes the selected file(s) or folder(s).

Copies the selected file(s) or folder(s).

Pastes the file(s) or folder(s).

Selects a file or a folder.

≶

Selects multiple files or folders.

品

Switches the GUI layout.

Shows contents of a text file.

Help

The *Help* icon launches the help screen with context-related help. You can search for specific words or phrases in the help and also step through previously displayed help topics.

Moves to the Help list topic.

🔶 Back

➔ Forward

Shows/hides the search box and buttons at bottom.

Searches forward.

When **Case Sensitive** is selected, searches distinguishing the upper case and the lower case.

Resource monitoring

The **Resource monitoring** icon launches a screen showing which applications are currently activated and which ports on the connector panel are assigned to each of the applications.

4.2.2 Application Toolbar

The *Application toolbar* consists of two columns plus the *Instrument toolbar*. You can expand/collapse the toolbar as shown in the figure below. The leftmost column, which is always displayed, contains the most commonly used functions and status indicators.

Left-most column

The left-most column contains the following functions and status indicators:

Start

Touch the **Start** icon to start the currently selected application/test. The icon changes to the **Stop** icon shown below, which can then be used to stop the test.

Stop

Touch the **Stop** icon to stop the currently running application/test. The back color indicates the pass/fail status. When the test has stopped, the icon changes to the **Start** icon shown above.

Traffic Start

This icon appears in case of applications having traffic generation. Touch the **Traffic Start** icon to start sending traffic of all ports under test. The icon changes to the **Traffic Stop** icon shown below.

₽

Traffic Stop

This icon appears in case of applications having traffic generation. Touch the **Traffic Stop** icon to stop the traffic of all ports under test. When the traffic has stopped, the icon changes to the **Traffic Start** icon shown above.

Port Status

Shows the current pass/fail status of the test. *Green* means pass, *red* means fail.

Port Status is the summary of all ports under test. If fail occurs in any layer, Port Status turns in red.

Help

Touch this icon to access the online help for the currently displayed screen or dialog box. You can search for specific words or phrases in the help and also step through previously displayed help topics.

→ Forward

Searches backward.

If **Case Sensitive** is selected, searches distinguishing the upper case and the lower case.

Report

Touch this icon to create a report.

 $\mathsf{Adobe} \circledast \ \mathsf{Reader} \circledast$ is recommended as a PDF viewer to open or print out the report.

Alarm/Error Insert

Touch this icon to activate the stimulus specified in the stimuli setup available in the expanded *Application toolbar*. Only relevant if the stimulus has been set to manual insertion. The *stimuli function* is used to generate special or abnormal conditions during a test.

Close

Touch this icon to close the application.

Expanded Application toolbar

The *Application toolbar* is expanded/collapsed by touching the tab placed above the left-most column. The column displayed in the expanded toolbar contains the following functions:

Restart Testing

Touch this icon to restart the current test.

Load Save

Touch this icon to open Load/Save dialog box. You can load or save Setup file or Result file.

Stimuli setup

Various fields and buttons are available for setting up a stimulus signal to provoke a special or abnormal situation during the test. When the signal has been specified, the stimulus is sent by touching the **Alarm/Error Insert** icon ($\overrightarrow{\blacksquare}$).

The stimulus signal is sent via the transmitter, and the received signal can simultaneously be inspected as a related status or result display. This allows to evaluate the behavior of the device under test.

The setup options vary depending on the stimulus mode (i.e. the signal type). Common functions for all stimulus modes are the port selection and stimulus type drop-down menus. Touching the **Clear all stimuli** button clears/resets the current stimulus settings.

In case of applications having traffic generation, the Traffic start button or the Traffic stop button appears for each ports.

4.3 Startup and Switch-off Sequences

This section describes what takes place when you switch the Network Master on and off as well as when you start up and close down an application.

4.3.1 Instrument Startup

When you switch on the instrument, the first screen displayed is a splash screen - introducing you to the GUI concept of the *desktop/workspace* and the various screen types (see the figure in the *GUI Concept* section). Then the <u>Application Selector</u> screen is displayed.

4.3.2 Application Startup

When you select an icon on the *Application Selector* screen to start an application, a *workspace* is created for that application and the relevant data is loaded into it. When the loading is complete, you are prompted to select the instrument resources (i.e. ports) that will be allocated to the application/test.

After the selection of resources, the *Ports Setup* screen is displayed, with the interface type(s) relevant for the selected application.

Some of the application icons are "double-icons", allowing you to start the application with an OTN signal layer if relevant. Be careful to touch the correct part of the icon when starting the application.

You can also start an application by selecting the result file on the *Report File Browser* screen. Refer to the next section.

4.3.3 Accessing Previous Tests and Test Results

When you select test result files on the *Report File Browser* screen, you can choose to either create a report from the results or to create a *workspace* containing the test setup data and its results.

Creating a *workspace* for a previous test allows you to view the test results in the GUI and also to rerun the test if required (either with the same setup or with changed parameter settings). You are brought directly to the *Test Results* screen when you touch the **View/Load File** button, but can navigate to the other screens in the workspace from there.

When you touch the **View** button, an application starts in *Viewer* mode. In this mode, you cannot start measurement. This mode is used to view the test result.

When you touch the **Load File** button, an application starts using the setting in the file. If other applications is using ports, the following message appears. In this case, you can start the application in *Viewer* mode.

Error Loading result file
The enclosed port resources are not available. Do you want to load the results in a viewer instead?
Abort <u>Y</u> es

When you touch the **Create Report** button, a file manager dialog box is displayed, allowing you to name and save the report (in PDF format).

4.3.4 Closing an Application

When you touch the **Close** icon in the *application toolbar*, you are prompted to confirm that you really want to close the current application. If you say "Yes", the *workspace* is closed and you are returned to the *desktop* (i.e. the *Application Selector* screen). The resources previously allocated to the application are freed to be used by another application if required.

4.3.5 Switching Off the Instrument

When you press the <u>Power button</u> on the instrument, the power-off menu is displayed. The menu contains the menu item **Shut Down**, and when you select that, you are prompted to confirm that you really want to switch off the instrument completely.

If you say "Yes", the shutdown is announced, and then after a few moments the power is turned off.

If you have any applications still active when you switch off the instrument, these applications will be closed automatically without any configuration data and/or test results being saved.

5 SDH/SONET/PDH/DSn Applications

This chapter describes the graphical user interface (i.e. screens, subscreens and major dialogs) related to SDH/SONET/PDH/DSn applications. Sub-screens and dialogs are described under the main screen from which they are activated/launched.

The following settings and applications are available:

- SDH Setup and Status
- SONET Setup and Status
- E1 Setup and Status
- DS1/J1 Setup and Status
- E3 Setup and Status
- DS3 Setup and Status
- E4 Setup and Status
- <u>APS</u>
- <u>BERT</u> • <u>RTD</u>

You can switch between SDH and SONET using the '<u>SDH/SONET switching</u>' dropdown menu on the SDH and SONET structure setup screens. 'SDH and SONET switching' also switches PDH and DSn.

5.1 SDH Setup and Status

An **STM-xx** button in the navigation area of the **Ports Setup** screen gives you access to the SDH setup for the transmitter and/or receiver of the currently selected port.

Refer to SDH/SONET switching for switching to SDH.

Synchronous Digital Hierarchy (SDH) is a standardized protocol that transfers digital signals over optical fiber using lasers. At low transmission rates data can also be transferred via an electrical interface.

The SDH interface uses the electrical BNC connectors and the optical ports.

MU100010A Connector Panel

5.1.1 Transmitter Setup

5.1.1.1 Physical Setup

When the transmitter is set up with an SDH interface, touching the **Tx** button in the navigation area will launch the following screen. (Note that the SDH Tx checkbox above the connector panel illustration is selected.)

Port 1 Port 2 Application Selector		
Tx ← STM-1 - AU4#All - VC-4 - C-3		
Rx → STM-1 - AU4#1 - VC-4 - C-3		
Optical transmitter: Electrical transmitter: Normal ♥ Off ♥ Unit 1310 nm OH overwrite position: SOH ♥ Byte Pos Clock Configuration	Optical transmitter Normal • LOS Rx signal level -2.53 dBm SDH	• ?
Timing source:	 LOF B1 AU-LOP 	Í
	OH capture Tributary scan Transceiver	X
📗 📖 BERT <u>SETUP</u> TEST RESULT 🔐 😁 🗫	₩ V 📑 15:07	

This screen allows you to enable the optical or electrical interface of the SDH transmitter. It can also be used to confirm the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Use the **Optical transmitter** or **Electrical transmitter** drop-down menus to select to the behavior of the transmitter. Set the other type to Off.

OH overwrite Only enabled when the **OH overwrite** has been selected to the behavior of the transmitter. Use the drop-down menu to select the relevant overwrite position. The available values are:

Optical

Flectrical transmitter

position

transmitter or
- SOH
- A1/A2 byte
- K1/K2 byte
- S1 byte
- DCC1-3 byte
- DCC4-12 byte
- J0 byte1 byte of SOH

When '1 byte of SOH' is selected, touch the **Byte Pos** button to launch the **1 Byte of SOH** dialog box. Select the byte to overwrite in the dialog box.

Clock Configuration

Use the drop-down menu to select the clock source. This is fixed to **Received** when the Port Mode is set to **Through** or **OH overwrite**.

Timing Source

Internal: Internal clock of the module External: The clock provided from the connector Received: The clock generated from the received signal

When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

Transceiver Displays the Transceiver information when Optical transmitter is selected.

5.1.1.2 SDH Frame Setup

Touching the navigation area button which represents the transmitter's SDH layer will launch the following screen.

Por	t 1 Port 2	Application Selector	
Тх	⊢	STM-1 - AU4#All - VC-4 - C-4	Follows
Rx)→[STM-1 - AU4#1 - VC-4 - C-4	None 🔻 🕑
зон	РОН	•	Optical transmitter Normal
STM-1/1e	r – All – VC-4		RBS 23 Rx signal level
		РОН	SDH
	TUG-3 #1	▼ VC-3 C-3 Bulk	• B1
	TUG-2 #1	• РОН С-12	AU-LOP
	1 12 #1		OH capture
	1 10-12 #1	Sync C-11	scan
TCM: Off		SDH/SONET switching:	SDH 🔻 Transceiver
BEI BEI	RT	SETUP TEST RESULT	¦ 🗃 🖘 🕸 V 💽 15 08 🛛 🗰

The general principle in setting up the SDH frame is to select the relevant values for the various containers in the multiplexing structure. This is done either via a drop-down menu or via a launched dialog box, by touching a drop-down menu or a button in the frame structure diagram.

Note that the currently 'active path' in the structure is highlighted. Note also that the changes you make will be reflected in the text displayed in the **STM-xx** button in the navigation area, if relevant.

FollowsTo make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its
settings), touch the right-most button in the navigation area and select the
Tx1 in the drop-down menu. The default setting is None. Note that the Port 1
transmitter cannot follow the Port 2 transmitter.

TCM Select the *TCM* (Tandem Connection Monitoring). The available TCM is decided by multiplex structure. If you select other TCM, the multiplex structure on the setup area will be changed.

The possible settings are:

Off N1 (VC-4) N1 (VC-3) N2 (VC-12/11)

SDH/SONET Allows you to switch between SDH and SONET. switching

SOH Editor You can configure the section overhead (SOH) in a special dialog box (**SOH Editor**), which is launched when you touch the **SOH** button.

The setup principle is the same in this editor dialog as in the SDH structure. Touching a button or opening a drop-down menu will open for new editor dialog boxes, new value selections etc.

- **S1**: Synchronization status
- **JO**: Regenerator section trace
 - Idle Char is an Ascii code used for the padding.
- A1, A2: Framing Defined A1 as F6h (1111011b), A2 as 28h (00101000b).
- **B1**: BIP-8 (bit interleaved parity) This byte cannot be set.
- E1, E2: Orderwire E1 is part of the RSOH, E2 is part of the MSOH.
- **F1**: User channel
- **D1-D3**: RS (regenerator section) data communication channel (DCC_R)
- **D4-D12**: MS (multiplex section) data communication channel (DCC_M)
- **B2**: BIP-N×24 These bytes cannot be set.
- K1, K2(bit 1 to bit 5): Automatic protection switching (APS) channel
- K2(bit 6 to bit 8): MS-RDI (multiplex section remote defect indication)
- MO, M1: MS-REI (multiplex section remote error indication)
- H1, H2, H3: AU-n pointer These bytes cannot be set.

POH Editor Touching a **POH** button launches the **VC-x POH Editor** dialog box. The contents of the dialog box depends on which path overhead you are configuring.

- **J1**: Path Trace
- Idle Char is an Ascii code used for the padding.
- **B3**: Path BIP-8 This byte cannot be set.
- C2: Signal label
- G1: (bit 1 to 4) REI (bit 5) RDI (bit 6 and 7) Reserved (bit 8) Spare
- F2,F3: Path user channels
- H4: Multiframe indicator
- **K3**: (bit 1 to 4) Automatic protection switching (APS) channels (bit 5 and 6) Spare (bit 7 and 8) Data link
- N1: Network operator byte

Port 1	Port 2 Application Selector		
Tx→	STM-1 - AU4#All - VC-4 - C-11	Follows	
Rx→	STM-1 - AU4#1 - VC-4 - C-4	None 💌	\bigcirc
зон	VC-12/VC-11 POH Editor	Optical transmitter Normal • LOS	
STM-1/1e 🔽 All	J2: CRC ON Message_Test_J2 Idle Char 20h	Rx signal level -2.53 dBm	?
	V5: Och xxxx110x O.181 Mapping	SDH	
	N2: 00h	LOF	
	K4: 00h	• B1	ľ
	Default Apply Cancel Ok	AU-LOP	
		OH capture	X
1	- TU-11 #1 ▼ Sync ▼ C-11 -	Tributary scan	
TCM: Off	SDH/SONET switching: SDH	Transceiver	
BERT	<u>SETUP</u> test result 📴 🔿	V № 15:10	

- J2: Path Trace
- Idle Char is an Ascii code used for the padding.
- V5: (bit 1 and 2) BIP-2 (bit 3) REI (bit 4) RFI (bit 5 to 7) Signal label (bit 8) RDI
- N2: Network operator byte
- K4: (bit 1) Extended signal label (bit 2) Low order virtual concatenation (bit 3 and 4) Automatic protection switching (APS) channels (bit 5 to 7) Reserved (bit 8) Data link
- Bulk PatternTo set up the bulk pattern, touch the Configure xxxxx button to launch the
Bulk Pattern dialog box.

	Bulk Patter	m ?
Pattern type:	PRBS 23	1
	Normal	Inverse
User pattern 32:		1/32 Bits
		Cancel

Pattern type

Select a predefined pattern or define a user pattern.

- User [32] bit, User [2048] bit: 32 bits or 2048 bits length pattern. The field which shows bit length is enabled. Touch the field to launch the dialog box to define the bit pattern. Refer to <u>The User Pattern Editor</u>.
- **PRBS9** to **PRBS31**: Pseudo-random bit sequence. The number indicates the bit length of sequence.

For example, bit length of PRBS9 is 2^9 -1=511. **Pattern logic** is enabled.

- All 0's, All 1's: All bits are 0, all bits are 1.
- Alternating 1:1, Alternating 1:3, Alternating 1:7: Bit pattern such as

"010101...", "100010001000...", "1000000010000000...". • 2 in 8: Bit pattern such as "010000100100001001000010...".

5.1.2 Receiver Setup

5.1.2.1 Physical Setup

When the receiver is set up with an SDH interface, touching the **Rx** button in the navigation area will launch the following screen. (Note that the **SDH Rx** checkbox above the connector panel illustration is selected.)

This screen allows you to make the physical setup of the receiver in SDH mode. It can also be used to confirm the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Receiver Touch the button corresponding to the relevant interface type.

- Off: No interface
- **SFP/SFP+**: Optical interface
- Electrical: Electrical interface (BNC connector)

Receiver gain Only relevant for electrical receivers. Select the attenuation and impedance mode from the drop-down menu.

- Terminate: Up to 12 dB cable attenuation, nominal impedance
- **Monitor**: 20 dB linear attenuation and up to 12 dB cable attenuation, nominal impedance.

Transceiver Displays the Transceiver information when Optical Transmitter is selected.

5.1.2.2 SDH Frame Setup

Touching the navigation area button which represents the receiver's SDH layer will launch the following screen.

The manner of setting up the SDH interface of receiver is the same as that of transmitter. Refer to <u>SDH Frame Setup</u> in 'Transmitter Setup''.

FollowsTo make the currently selected receiver follow either the transmitter or Port
1 receiver (i.e. copy its settings), touch the right-most button in the
navigation area and select the relevant value in the drop-down menu. The
default setting is None. Note that the Port 1 receiver cannot follow the Port 2
receiver.

TCM Select the *TCM* (Tandem Connection Monitoring). The available TCM is decided by multiplex structure. If you select other TCM, the multiplex structure on the setup area will be changed.

The possible settings are:

```
Off
N1 (VC-4)
N1 (VC-3)
N2 (VC-12/11)
```

SDH/SONET Allows you to switch between SDH and SONET.

switching

5.1.3 Status Information

This section describes the status information available for the SDH layer in the status area of the **Ports Setup** screen.

5.1.3.1 Status Summary

The status summary displayed for the SDH layer consists of the following information:

Physical Status The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.

Alarm/ErrorThe middle part of the status area gives you access to alarm and errorStatusThe middle part of the selected interface. The status is indicated by the lamp
color.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors. **Capture/Monitor** At the bottom of the status area are below buttons that give you access to various capture/monitor information. By touching a button, you can launch the corresponding information display.

- OH capture
- Tributary scan
- Transceiver

5.1.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen launches the dialog box shown below.

	Port 1	Port 2	Application Selector			
	Tx ←	S	STM-1 - AU4#All - VC-4 - C-3		Follows	
	Rx →	S	STM-1 - AU4#1 - VC-4 - C-3		None 🔽	\bigcirc
	SDH		· · · · · · · · · · · · · · · · · · ·]	Optical transmitter Normal	
	Rx signal level	• -12	2.12 dBm		• LOS	
	Deviation		0 ppm		-12.12 dBm	?
			0 bps		SDH	
	Bit rate	155 520 0	000 bps		0105	
					0.001	r 2 7
	Pattern bit rate	48 384 0	000 bps		• B1	
	Tx signal level	-2	2.54 dBm		AU-LOP	
					OH capture	~
					Tributary scan	<u> </u>
1					Transceiver	
	BERT	<u>SE</u> 1	TUP TEST RESULT	💾 📑 🖘	≫V 🗾 15:12	

This dialog box presents detailed information about the current physical status of the received signal at the STM-1/4/16/64 optical/electrical interface.

The physical status information consists of the following parameters.

When Receiver is set to OFF, 'N/A's are displayed.

Rx signal level

- Signal Level (Optical) shows the optical signal level in dBm.
- Signal Level (Electrical) shows the electrical signal level in dB.

'N/A' is displayed when input level is too low to detect the signal level. The lamp indicates LOS status.

Deviation

This field shows the deviation from the relevant nominal bit rate:

- STM-1/1e: 155 520 000 bps
- STM-4: 622 080 000 bps
- STM-16: 2 488 320 000 bps
- STM-64: 9 953 280 000 bps

Bit rate

The current bit rate is shown (in bps).

Pattern bit rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

Tx signal level

When optical is selected, this field shows the output power the SFP module. When electrical is selected, 'N/A' is displayed.

5.1.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen allows you to launch the display shown below.

Port 1	Port 2	Application Selector			
Tx →		STM-1 - AU4#All - VC-4 - C-3		Follows	
Rx →		STM-1 - AU4#1 - VC-4 - C-3		None 🔻	
Alarms LOS LOF OOF MS-AIS MS-RDI AU-AIS AU-LOP HP-TIM HP-PLM	TU-LOM LP-TIM LP-UNEQ LP-RDI LP-PLM LSS TC-UNEQ TC-LITC	Errors A1A2 B1 U B2 Sw MS-REI B3 TCC HP-REI US/B3 LP-REI TCC Pattern errors	-NDF -NDF ritch -IEC SC -BIP-2 -REI -OEI	tical transmitter Normal LOS signal level -12.15 dBm H LOF B1	● ? ⊮
HP-UNEQ HP-RDI TU-AIS TU-LOP	TC-TIM TC-AIS TC-RDI TC-ODI	Pointer information AU-Positive TU AU-Negative TU SETUP TEST RESUL	I-Positive I-Negative	AU-LOP OH capture Tributary scan Transceiver	×

This screen contains detailed alarm and error information related to the SDH interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- LOF: Loss of Frame
- **OOF**: Out of Frame
- MS-AIS: Multiplex Section Alarm Indication Signal
- MS-RDI: Multiplex Section Remote Defect Indication
- AU-AIS: Administrative Unit Alarm Indication Signal
- AU-LOP: Administrative Unit Loss of pointer
- **HP-TIM**: High order Path Trace Identifier Mismatch
- HP-PLM: High order Path Payload Mismatch
- HP-UNEQ: High order Path UNEQuipped
- HP-RDI: High order Path Remote Defect Indication
- TU-AIS: Tributary Unit Alarm Indication Signal
- TU-LOP: Tributary Unit Loss of pointer
- **TU-LOM**: Tributary Unit Loss of Multiframe
- LP-TIM: Low order Path Trace Identifier Mismatch
- LP-UNEQ: Low order Path UNEQuipped
- LP-RDI: Low order Path Remote Defect Indication
- LP-PLM: Low order Path Payload Mismatch
- LSS: Loss of Sequence Synchronization
- TC-UNEQ: Tandem Connection UNEQuipped
- TC-LTC: Tandem Connection Loss of Tandem Connection
- TC-TIM: Tandem Connection Trace Identifier Mismatch
- **TC-AIS**: Tandem Connection Alarm Indication Signal
- TC-RDI: Tandem Connection Remote Defect Indication
- **TC-ODI**: Tandem Connection Outgoing Defect Indication

Errors

- A1A2: Bytes used for the frame synchronization
- **B1**: The byte of BIP-8 (Bit Interleaved Parity-8)
- **B2**: The bytes of BIP-N×24 (Bit Interleaved Parity N×24)
- MS-REI: Multiplex Section Remote Error Indication
- B3: The byte of BIP-8 (Bit Interleaved Parity-8)

- HP-REI : High order Path Remote Error Indication
- V5/B3: BIP-2 of VC-12/VC-11 or BIP-8 of Low order VC3
- LP-REI: Low order Path Remote Error Indication
- Pattern errors: Bit error detected in the payload
- AU-NDF: Administrative Unit New Data Flag
- **TU-NDF**: Tributary Unit New Data Flag
- Switch: APS switching occurred
 TC-IEC: Tandem Connection Inco
- **TC-IEC**: Tandem Connection Incoming Error Count
- **TC-BIP-2**: Tandem Connection Bit Interleaved Parity-2
- TC-REI: Tandem Connection Remote Error Indication
- **TC-OEI**: Tandem Connection Outgoing Error Indication

Pointer Information

- **AU-Positive**: Administrative Unit Positive stuffing
- AU-Negative: Administrative Unit Negative stuffing
- TU-Positive: Tributary Unit Positive stuffing
- TU-Negative: Tributary Unit Negative stuffing

5.1.3.4 OH capture

Touching the **OH capture** button in the status area of the **Ports Setup** screen launches the screen shown below.

This screen shows SDH capture status information for one frame at a time. Touch the frame selection buttons to select which frame to display.

Refreshing
informationRefresh once
When touch the Pause button, the Update button is showed at left side
of the Pause one and information is not updated. Touching the Update
button will refresh the dialog information once.Refresh continuously
When the dialog is open and touch the Pause button at refresh once
mode, information is updated continuously.Displaying
detailed
informationDetailed overhead byte information can be accessed by touching a specific
byte. This will launch a separate dialog containing a description of and
details about the selected byte.

			Port 1			Port 2		pplication S	elector	J			
		Tx	●←				STM-1	- AU4#All -	VC-4 - C-3			Follows	
		Rx	∎→				STM-1	- AU4#1 - V	/C-4 - C-3			None	
	00	-07	08	-15	16-	23				—×	56-63	Optical transmitter Norm	nal
	Frame A1: F6	e: 000 A1: F6	A1:	A2:	A2:	OH A2: 28	G1			0x00		 LOS Rx signal level 	2
	B1: 88	00	00	 00	00	00	Description Path Status				1	-12.15 dB	
	00 H1:	00 H1:	00 H1:	00 H2:	00 H2:	00 H2:	REI: G1 (bit0- RDI: G1 (bit4)	bit3)		- 1	2		
	B2:	B2: 68	B2: 68	K1:	 00	 00	Spare: G1 (b)	it7)			4		F
	D4: 00 D7:	00	00	D5: 00 D8:	 00	 00 	Value: 0				5	• B1	
	00 D10:	00	00	00 D11:	00	00		Close			6	AU-LOP	
	S1: 00	00	00		M0: 00	M1: 00	00 00 0	0	00	00	7	OH capture Tributary	X
	JO: J1: J1-LP:	Mess Mess Mess	age_le age_Te age_Te	st_10 st_11 st_11							Pause	scan Transceiver	
I		8880 8880	BERT				<u>SETUP</u>	TEST	RESULT	Ê	k ⊡ k ⊗i	🄉 V 📑 15:13	

5.1.3.5 Tributary scan

Touching the **Tributary scan** button in the status area of the **Ports Setup** screen displays the status shown below.

This screen allows to measure the alarms and errors of all VC-containers in the High order or the Low order at the same time. Note that the Low order scan is performed against the High order channel which you have selected.

ScanningThis button appears when the Low order channel exists. In Scan Mode, touch
the Scan Start button to start the scanning. To stop the scanning touch the
Scan Stop button (same button, which toggles between the two functions).

Details To view detailed information for a specific channel, touch the **Detail Mode** button and then touch the channel number.

5.1.3.6 Transceiver

Touching the **Transceiver** button in the status area of the **Ports Setup** screen launches the dialog shown below.

Port 1	Port 2	oplication Selector		~
Tx ←	STM-1 - /	AU4#All - VC-4 - C-12	Follows	
Rx →	STM-1 -	AU4#1 - VC-4 - C-12	None 🔻	\bigcirc
Module Present Transceiver Information Wavelength and bit rate		Power monitor Tx[dBm] Rx[dBm] -2.51 -12.14	Optical transmitter Normal LOS Rx signal level	2
Wavelength(Nominal) Bit Rate(Nominal)	1 310 nm 10 300 Mbps		SDH • LOF	
			B1AU-LOP	
			OH capture Tributary scan	X
BERT	<u>SETUP</u>	TEST RESULT 🔐 🗃	Transceiver	

This dialog box presents status information about the optical transceiver.

Module Present Green indicates that optical transceiver presents.

TransceiverSelect the information from pull down menu.Information

- Wavelength and bit rate shows the nominal wavelength and bit rate.
- **Compliance** shows the available standards.
- Vendor information shows the data stored in the optical transceiver.

Power monitor The transmitting optical power is displayed in left column. Unit of the optical power is dBm.

The received optical power is displayed in right column. Unit of the optical power is dBm.

5.2 SONET Setup and Status

An **OC-xx/STS-xx** button in the navigation area of the **Ports Setup** screen gives you access to the SONET setup for the transmitter and/or receiver of the currently selected port.

Refer to <u>SDH/SONET switching</u> for switching to SONET.

Synchronous Optical Networking (SONET) refers to a standardized protocol that transfers digital signals over optical fiber using lasers. At low transmission rates data can also be transferred via an electrical interface.

The SONET interface uses the electrical BNC connectors and the optical ports.

MU100010A Connector Panel

5.2.1 Transmitter Setup

5.2.1.1 Physical Setup

When the transmitter is set up with a SONET interface, selecting the **Tx** button in the navigation area will launch the following screen. (Note that the **SONET Tx** checkbox above the connector panel illustration is selected.)

Port 1 Port 2 Application Selector		
CC-3 - STS-3c#All - 3c SPE - C-12		
Rx → OC-3 - STS-3c#1 - 3c SPE - C-12		\bigcirc
Optical transmitter: Electrical transmitter: Wavelength(Nominal) Normal Off Vompliance	Optical transmitter Normal • LOS Rx signal level	
OH overwrite position: 1 byte of TOH V Byte Pos	-12.15 dBm SONET	
Timing source:	 LOF B1 	Í
SONET TX	LOP-P OH capture	
	Tributary scan Transceiver	×
III IIII BERT <u>SETUP</u> TEST RESULT III III III III III III III III IIII IIII	> V 15 15 15	

This screen allows you to enable the optical or electrical interface of the SONET transmitter. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Optical transmitter or Electrical transmitter OH overwrite position Use the **Optical transmitter** or **Electrical transmitter** drop-down menus to select to the behavior of the transmitter. Set the other type to **Off**.

Only enabled when the **OH overwrite** has been selected to the behavior of the transmitter. Use the drop-down menu to select the relevant overwrite position. The available values are:

- TOH
- A1/A2 byte
- K1/K2 byte
- S1 byte
- DCC1-3 byte
 DCC4-12 byte
- DCC4-12
 J0 byte
- 1 byte of TOH

When '1 byte of TOH' is selected, touch the **Byte Pos** button to launch the **1 Byte of TOH** dialog box. Select the relevant byte in the dialog.

Port 1	ort 2			Applica	ation S	elector	·					
				1 By	te of	TOF	1)			
	A11	A12	A13	A21	A22	A23	JO	×18	x19		Optical transmitter	
Optical transmitter:		x22	x23	E1	x25	x26	F1	x28	x29	nal)	OH overwrite LOS	
OH overwrite	D1	x32	x33	D2	x35	x36	D3	x38	x39		Rx signal level -12.15 dBm	?
Clock Configuration											SONET	
				К1	x55	x56	К2	x58	x59			Ē
Timing source:	D4	x62	x63	D5	x65	x66	D6	x68	x69		● LOF	-
	D7	x72	x73	D8	x75	x76	D9	x78	x79		○ B1	Ē
	D10	x82	x83	D11	x85	x86	D12	x88	x89		● LOP-P	
	S1	x92	x93		мо	М1	E2	x98	x99		OH capture	
							Cance	el	Ok	L	Tributary scan	×
	_	<u> </u>		-							Transceiver	1
BERT		SE	TUP	т	EST	RES	SULT		# C	ا چ	🔉 V 📑 15:15	

Clock Configuration

Use the drop-down menu to select the clock source. This is fixed to **Received** when the Port Mode is set to **Through** or **OH overwrite**.

Timing Source

Internal: Internal clock of the module **External**: The clock provided from the connector **Received**: The clock generated from the received signal

When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

Transceiver Displays the Transceiver information when Optical Transmitter is selected.

5.2.1.2 SONET Frame Setup

Touching the navigation area button which represents the transmitter's SONET layer will launch the following screen.

Port 1	Port 2	Application Selector		
Tx ←	OC-3	- STS-3c#All - 3c SPE - C-12		Follows
Rx →	OC-3	- STS-3c#1 - 3c SPE - C-12		None 🔽 💌
тон	РОН	Y	Optic	al transmitter Normal S
OC-3/STS-3	All 3c SPE	C-4	Configure PRBS 23	nal level -12.15 dBm
		РОН	SONE	T OF
	TUG-3 #1	VC-3 C-3	Bulk • B	1
	VTG #1	РОН С-12	• L	OP-P
			(OH capture
	1 - VT-2 #1 ▼ - S	ync C-11		Tributary scan
TCM: Off		SDH/SONET swite	ching: SONET 🔽 📘 ٦	ransceiver
BERT	<u>SETU</u>	<u>IP</u> TEST RESULT	💾 📑 🖘 🕅 V	′ <mark>№</mark> 15:16

The general principle in setting up the SONET frame is to select the relevant values for the various containers in the multiplexing structure. This is done either via a drop-down menu or via a launched dialog box, by touching a drop-down menu or a button in the frame structure diagram.

Note that the currently 'active path' in the structure is highlighted. Note also that the changes you make will be reflected in the text displayed in the SONET button in the navigation area, if relevant.

FollowsTo make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its
settings), touch the right-most button in the navigation area and select the
Tx1 in the drop-down menu. The default setting is None. Note that the Port 1
transmitter cannot follow the Port 2 transmitter.

TCM Select the *TCM* (Tandem Connection Monitoring). The available TCM is decided by multiplex structure. If you select other TCM, the multiplex structure on the setup area will be changed.

The possible settings are:

Off	
Ζ5	(STS-3c)
Ζ5	(STS-1)
Z6	(VT-2/1.5)

SDH/SONET Allows you to switch between SDH and SONET. switching

TOH Editor You can configure transport overhead (TOH) in a special dialog box (**TOH Editor**), which is launched when you touch the **TOH** button.

The setup principle is the same in this editor dialog box as in the SONET structure. Touching a button or opening a drop-down menu will open for new editor dialog boxes, new value selections etc.

- **S1**: Synchronization status
- JO: Regenerator section trace
 - Idle Char is an Ascii code used for the padding.
- A1, A2: Framing Defined A1 as F6h (1111011b), A2 as 28h (00101000b).
- **B1**: BIP-8 (bit interleaved parity) This byte cannot be set.
- E1, E2: Orderwire
- E1 is part of the Section Overhead, E2 is part of the Line Overhead. **F1**: User channel
- D1-D3: Section data communication channel (DCC_R)
- **D4-D12**: Line data communication channel (DCC_M)
- **B2**: BIP-N×24 These bytes cannot be set.
- K1, K2(bit 1 to bit 5): Automatic protection switching (APS) channel
- K2(bit 6 to bit 8): RDI-L (Line remote defect indication)
- M0, M1: REI-L (Line remote error indication)
- H1, H2, H3:STS pointer These bytes cannot be set.

POH Editor Touching a **POH** button launches the **STS-x POH Editor** or **VT-2/VT1.5 POH Editor** dialog box. The contents of the dialog depends on which path overhead you are configuring.

- J1: Path Trace
- Idle Char is an Ascii code used for the padding.
- **B3**: Path BIP-8 This byte cannot be set.
- C2: Signal label
- G1: (bit 1 to 4) REI (bit 5) RDI (bit 6 and 7) Reserved (bit 8) Spare
- F2,Z3: Path user channels
- H4: Multiframe indicator
- **Z4**: (bit 1 to 4) Automatic protection switching (APS) channels (bit 5 and 6) Spare (bit 7 and 8) Data link
- **Z5**: Network operator byte

Port 1 Port 2 Application Selector		
Tx OC-3 - STS-3c#All - 3c SPE - C-12	Follows	
Rx → OC-3 - STS-3c#1 - 3c SPE - C-12	None 🔽	
VT-2/VT-1.5 POH Editor ? ×	Optical transmitter Normal • LOS	
OC-3/STS-3 ▼ - All - J2: CRC ON Message_Test_J2 Idle Char 20h	Rx signal level -12.15 dBm	?
V5: Ch xxxx110x 0.181 Mapping	SONET	
Z6: OOh	• LOF	
Z7: OOh	B 1	Í
Default Apply Cancel Ok	LOP-P	
	OH capture	V
1 - VT-2 #1 ▼ - Sync ▼ - C-11	Tributary scan	
TCM: Off SDH/SONET switching: SONET	Transceiver	
🛄 📰 bert <u>SETUP</u> test result 阱 🗃 🗇 🕸	▶ V 💽 15:16	

- J2: Path Trace
- Idle Char is an Ascii code used for the padding.
- V5: (bit 1 and 2) BIP-2 (bit 3) REI (bit 4) RFI (bit 5 to 7) Signal label (bit 8) RDI
- **Z6**: Network operator byte
- **Z7**: (bit 1) Extended signal label (bit 2) Low order virtual concatenation (bit 3 and 4) Automatic protection switching (APS) channels (bit 5 to 7) Reserved (bit 8) Data link
- Bulk PatternTo set up the bulk pattern, touch the Configure xxxxx button to launch the
Bulk Pattern dialog box.

	Bulk Patter	n ?
Pattern type:	PRBS 23	•
	Normal	Inverse
User pattern 32:		1/32 Bits
		Cancel

Pattern type

Select a predefined pattern or define a user pattern.

- User [32] bit, User [2048] bit: 32 bits or 2048 bits length pattern. The field which shows bit length is enabled. Touch the field to launch the dialog box to define the bit pattern. Refer to <u>The User Pattern Editor</u>.
- **PRBS9** to **PRBS31**: Pseudo-random bit sequence. The number indicates the bit length of sequence.

For example, bit length of PRBS9 is 2^9 -1=511. **Pattern logic** is enabled.

- All 0's, All 1's: All bits are 0, all bits are 1.
- Alternating 1:1, Alternating 1:3, Alternating 1:7: Bit pattern such as

"010101...", "100010001000...", "1000000010000000...". • 2 in 8: Bit pattern such as "010000100100001001000010...".

5.2.2 Receiver Setup

5.2.2.1 Physical Setup

When the receiver is set up with a SONET interface, touching the **Rx** button in the navigation area will launch the following screen. (Note that the **SONET Rx** checkbox above the connector panel illustration is selected.)

This screen allows you to make the physical setup of the receiver in SONET mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Receiver Touch the button corresponding to the relevant interface type.

- Off: No interface
- **SFP/SFP+**: Optical interface
- Electrical: Electrical interface (BNC connector)

Receiver gain Only relevant for electrical receivers. Select the attenuation and impedance mode from the drop-down menu.

- Terminate: Up to 12.7 dB cable attenuation, nominal impedance
- **Monitor**: 20 dB linear attenuation and up to 12 dB cable attenuation, nominal impedance.

Transceiver Displays the Transceiver information when Optical transmitter is selected.

5.2.2.2 SONET Frame Setup

Touching the navigation area button which represents the receiver's SONET layer will launch the following screen.

The manner of setting up the SONET interface of receiver is the same as that of transmitter. Refer to <u>SONET Frame Setup</u>.

FollowsTo make the currently selected receiver follow either the transmitter or Port
1 receiver (i.e. copy its settings), touch the right-most button in the
navigation area and select the relevant value in the drop-down menu. The
default setting is None. Note that the Port 1 receiver cannot follow the Port 2
receiver.

TCM Select the *TCM* (Tandem Connection Monitoring). The available TCM is decided by multiplex structure. If you select other TCM, the multiplex structure on the setup area will be changed.

The possible settings are:

```
Off
Z5 (STS-3c)
Z5 (STS-1)
Z6 (VT-2/1.5)
```

SDH/SONET Allows you to switch between SDH and SONET.

switching

5.2.3 Status Information

This section describes the status information available for the SONET layer in the status area of the **Ports Setup** screen.

5.2.3.1 Status Summary

The status summary displayed for the SONET layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/ErrorThe middle part of the status area gives you access to alarm and errorStatusInformation for the selected interface. The status is indicated by the lamp color.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors. **Capture/Monitor** At the bottom of the status area are below buttons that give you access to various capture/monitor information. By touching a button, you can launch the corresponding information display.

- OH capture
- Tributary scan
- Transceiver

5.2.3.2 Physical Details

Refer to Physical Details in "SDH Setup and Status".

5.2.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen allows you to launch the dialog box shown below.

This dialog box contains detailed alarm and error information related to the SONET interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- LOF: Loss of Frame
- **OOF**: Out of Frame
- AIS-L: Line Alarm Indication Signal
- **RDI-L**: Line Remote Defect Indication
- AIS-P: Path Alarm Indication Signal
- LOP-P: Path Loss of pointer
- **TIM-P**: Path Trace Identifier Mismatch
- PLM-P: Path Payload Mismatch
- UNIQ-P: Path UNEQuipped
- **RDI-P**: Path Remote Defect Indication
- AIS-V: VT-Path Alarm Indication Signal
- LOP-V: VT-Path Loss of pointer
- LOM-V: VT-Path Loss of Multiframe
- TIM-V: VT-Path Trace Identifier Mismatch
- UNIQ-V: VT-Path UNEQuipped
- **RDI-V**: VT-Path Remote Defect Indication
- PLM-V: VT-Path Payload Mismatch
- LSS: Loss of Sequence Synchronization
- TC-UNEQ: Tandem Connection UNEQuipped
- TC-LTC: Tandem Connection Loss of Tandem Connection
- TC-TIM: Tandem Connection Trace Identifier Mismatch
- TC-AIS: Tandem Connection Alarm Indication Signal

- **TC-RDI**: Tandem Connection Remote Defect Indication
- TC-ODI: Tandem Connection Outgoing Defect Indication

Errors

- A1A2: Bytes used for the frame synchronization
- B1: The byte of BIP-8 (Bit Interleaved Parity-8)
- **B2**: The bytes of 24 parity bits
- REI-L: Line Remote Error Indication
- B3: The byte of BIP-8 (Bit Interleaved Parity-8)
- **REI-P** : Path Remote Error Indication
- **V5/B3**: BIP-2 of VT-2/VT-1.5 or BIP-8 of Low order VC-3
- REI-V: VT-Path Remote Error Indication
- Pattern errors: Bit error detected in the payload
- **STS-NDF**: Path New Data Flag
- VT-NDF: VT-Path New Data Flag
- **Switch** : APS switching occurred
- TC-IEC: Tandem Connection Incoming Error Count
- TC-BIP-2: Tandem Connection Bit Interleaved Parity-2
- TC-REI: Tandem Connection Remote Error Indication
- **TC-OEI** :Tandem Connection Outgoing Error Indication

Pointer information

- **STS-Positive**: Synchronous Transport Signal Positive stuffing
- STS-Negative: Synchronous Transport Signal Negative stuffing
- VT-Positive: Virtual Tributary Positive stuffing
- VT-Negative: Virtual Tributary Negative stuffing

5.2.3.4 OH Capture

Refer to OH Capture in "SDH Setup and Status".

5.2.3.5 Tributary Scan

Refer to Tributary Scan in "SDH Setup and Status".

5.2.3.6 Transceiver

Refer to <u>Transceiver</u> in "SDH Setup and Status".

5.3 E1 Setup and Status

E1 represents the 2 Mbit/s PDH layer. The **Ports Setup** screen gives you access to the PDH layer setup for the transmitter and/or receiver of the currently selected port.

Plesiochronous Digital Hierarchy (PDH) refers to the technology originally used in telecommunications networks to transport data over digital transport equipment such as fiber optic systems.

E1 allows transmission of data streams that are nominally running at the same rate, however allowing for some variation in the speed around a nominal rate (+/-125 ppm variation around 2 Mbit/s).

The E1 interface uses the electrical BNC connectors (unbalanced) or the electrical RJ48 connectors (balanced).

5.3.1 Transmitter Setup

5.3.1.1 Physical Setup

When the transmitter is set up with only an E1 interface, touching the \mathbf{Tx} button in the navigation area will launch the following screen.

Switching between PDH Tx and DSn Tx is done in the SDH/SONET transmitter setup screen.

- 1. Select SDH Tx or SONET Tx checkbox.
- 2. Touch STM-xx, STS-xx, or OC-xx button in the navigation area.
- Use drop down menu at right bottom to switch SDH or SONET. Selecting the SDH displays PDH Tx on Tx screen. Selecting the SONET displays DSn Tx on Tx screen.
- 4. Touch **Tx** button in the navigation area.
- 5. Select **PDH Tx** or **DSn Tx** checkbox.
- 6. Clear SDH Tx or SONET Tx checkbox.
- 7. Touch **E1** radio button. Touching **Off** radio button disables the transmitter.

This screen allows you to make the physical setup of the PDH transmitter in E1 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

- ConnectorSelect the type of the input/output connectors of the instrument. ChooseUnbalanced to link to the corresponding unbalanced connector, or chooseBalanced to link to the corresponding balanced connector. A balancedoutput goes to the RJ48 connector.
- **Drop and insert** Select the source for the transmitter. The whole contents of *Port 1* and *Port 2* can be selected as a source. **Off** is identical to normal transmitter mode.

Timing Source Select the clock source.

Internal: Internal clock of the module **External**: The clock provided from the Ext Clock connector **Received**: The clock generated from the received signal

When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

5.3.1.2 E1 Signal Setup

Touching the navigation area button which represents the transmitter's E1 layer will display the screen.

Follows To make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its settings) when using Port 1 and Port 2, touch the drop-down menu in the navigation area and select the **Tx1**. The default setting is **None**. Note that the Port 1 transmitter cannot follow the Port 2 transmitter.

Frame tab page

The **Frame** tab page contains the following parameters:

Port	1 Port 2 Application Selector	
Тх	E	Follows
Rx	→ E1	None 🔽 🕑
Frame Conte	nt CAS	Transmission On • LOS
Line code:	AMI HDB3	Deviation 0 ppm
PCM frame:	Off On	• AIS
CRC4:	Off On	No frame
Sa-Bits:	Insert Sa-Bits	No Sync
		Alignment
		CAS
		Traffic
BER	T <u>SETUP</u> test result 🔐 🗃 🛪	🛪 🗗 🔰 🚺 🖬

Line code

Use the ${\bf Line\ code}$ radio buttons to select transmission line code ${\bf HDB3}$ or ${\bf AMI}.$

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) insertion of PCM frame in the transmitted signal.

When PCM frame is set to Off, many of the following transmitter parameters are insignificant.

CRC4

transmitted signal contained in the PCM Frame. If you are uncertain whether the CRC4 should be selected or not, it is

Use the CRC4 radio buttons to enable (On) or disable (Off) CRC4 in the

recommended to enable the CRC4.

If **Drop and Insert** of the total contents of a receiver is selected and the signal contains CRC4, it is possible to either Bypass or Insert Sa-Bits.

Sa-Bits

Use the drop-down menu above the setup field to select whether or not to **Insert Sa-Bits** or **Bypass Sa-Bits** (this is only relevant when **Drop and insert** is set to **On**).

You can set the Sa-Bits value of the non-FAS words in the transmitted signal when containing PCM Frame/CRC4. Touch the **Sa-Bits** setup field to open the setup dialog box.

In **Sa-Bits** dialog box, change the individual Sa-bits by touching on the relevant bit keys - this will toggle the bit key's binary value from logic 1 to 0 or vice versa. Touch **Ok** to accept the changes and close the dialog.

Content tab page

The **Content** tab page contains the following parameters:

Port 1	Port 2	Application Select	or		~
Tx →		E1		Follows	
Rx		El		None 🔻	
Frame Conten	CAS			Transmission On • LOS	0
Pattern type:	User [2048] bit	Channel contents: Off	• •	Deviation 0 ppm	?
	Normal Inverse	Channel Time		E1	ĕ
User pattern: Unused	8/2048 Bits			No frame	1
time slots: Pattern				• No Sync	
time slots:				Alignment	X
				CAS	
				Traffic	-
BERT	<u>SETU</u>	P TEST R	ESULT 💾 🗃 🤋	🗙 🎉 🔰 17:24	

Pattern type

Select the pattern to be inserted in the transmitted signal.

- Off: Does not insert the pattern.
- User [32] bit, User [2048] bit: 32 bits or 2048 bits length pattern.
- **PRBS 6** to **PRBS 23**: Pseudo-random bit sequence. The number indicates the bit length of sequence.

For example, bit length of PRBS 9 is 2^9 -1=511. **Pattern Logic** is enabled.

- **QRSS 11**, **QRSS 20**: Quasi-random signal source. The bit length of QRSS 11 is 2047, the length of QRSS 20 is 1 048 575.
- Fox Pattern 'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 1234567890' in Ascii code
- Fox (CMA3000) The 'fox pattern' using for the combined test with CMA3000 (the previous model of Network Master)
- All 0's, All 1's: All bits are 0, all bits are 1.
- Alternating 1:1: Bit pattern such as "010101..."
- Alternating 1:3: Bit pattern such as "100010001000..."
- Alternating 1:7: Bit pattern such as "1000000010000000..."
- Alternating 3:24: A repeating 24-bit sequence that contains three ones, fifteen consecutive zeros and 12.5% average ones density.

You can select 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

Unused time slots

Touch the **Unused time slots** field and use the launched dialog box to define the unused time slots.

Unused Time Slots			
0 1 0 1	0 1 0 1		
Clear all	Cancel Ok		

In the **Unused time slots** dialog box, change the individual bits by touching on the relevant bit keys - this will toggle the bit key's binary value from logic 1 to 0 or vice versa. Touch **Ok** to accept the changes and close the dialog box.

Pattern time slots

Touch the **Pattern time slot** graphics and use the dialog box to select the timeslots in which the Pattern will be inserted. Set and clear timeslots as relevant.

Choose timeslot							
	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
Set all Clear all Cancel Ok							

Channel contents

Use the **Channel contents** drop-down menu to select the signal transmitting into the timeslot:

- Off: No channel content is selected.
- **Transparent**: Received content in same channel time slot is used. 'Drop and insert' on Tx screen will be switched to On.

Channel Time Slot

Touch the **Channel Time Slot** graphics and use the dialog box to select the timeslot to insert the Audio signal.

Choose timeslot							Q
	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
24 25 26 27 28 29 30 31 Cancel							

CAS tab page

The **CAS** tab page contains the following parameters:

Port 1 Port	2 Application Selector	
Tx →	E1	Follows
Rx →	El	None 🔽 🕑
Frame Content CAS CAS: Off Channel: Other Channels	On Bits: 1111 Other bits: 1001	Transmission On LOS Deviation Deviation 0 ppm E1 Image: Compare the second
BERT	<u>SETUP</u> TEST RESULT	🔐 🗃 🛪 🛿 V 📑 11 21

CAS

Use the **CAS** radio buttons to enable (**On**) or disable (**Off**) the insertion of a CAS signaling multiframe into time slot 30 of the transmitted signal.

Touch the **Channel**, **Bits** and **Other bits** fields to define the contents of a selectable CAS channel as well as the remaining channels.

5.3.2 Receiver Setup

5.3.2.1 Physical Setup

When the receiver is set up with only an E1 interface, selecting the **Rx** button in the navigation area will launch the following screen.

Port 1	Port 2 Application Selector	
Tx→	El	
	El	
Off I E1	E3 E4 DS1/J1 DS3	Transmission On LOS
Connector:	Unbalanced Balanced	Deviation 0 ppm
Input mode:	Terminate	AIS
Input sensitivity:	Full sensitivity	• No frame
		• No Sync
	SDH Rx	Alignment
		CAS
		Traffic
BERT	SETUP TEST RESULT 🔐 🔿 🗇	🛚 🕅 🚺 🚺 🕺 🕅

Switching between PDH Rx and DSn Rx is done in the SDH/SONET receiver setup screen.

- 1. Select SDH Rx or SONET Rx checkbox.
- 2. Touch STM-xx, STS-xx, or OC-xx button in the navigation area.
- 3. Use drop down menu at right bottom to switch SDH or SONET. Selecting the SDH displays **PDH Rx** on **Rx** screen. Selecting the SONET displays **DSn Rx** on **Rx** screen.
- 4. Touch **Rx** button in the navigation area.
- 5. Select PDH Rx or DSn Rx checkbox.
- 6. Clear SDH Rx or SONET Rx checkbox.
- 7. Touch **E1** radio button. Touching **Off** radio button disables the receiver.

This screen allows you to make the physical setup of the PDH receiver in E1 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Connector Select the physical type of the relevant output connectors located on the back panel of the instrument. Choose **Unbalanced** to link to the corresponding unbalanced connector, or choose **Balanced** to link to the corresponding balanced connector. A balanced input is taken from RJ48 connector.

Input mode Select the mode of input.

Terminate

Used when the instrument is used as a tester and the receiver is the only device connected to the line. The input impedance is nominal.

Bridged

Used when the receiver is connected directly in parallel to a line carrying live traffic. Please observe that this way of connecting may disturb the monitored line - connection through a protected monitor point, as well as using the input mode **Monitor**, is recommended instead.

```
Monitor
```

Used when connecting to protected monitoring points. The input impedance is nominal.

Input sensitivity Set the sensitivity of the input. The available options are:

Full sensitivity

Signal levels down to the maximum sensitivity on the instrument are accepted.

-20 dB

Input signal attenuated by -20 dB or more relative to the nominal level will be considered Loss Of Signal.

-33 dB

Input signal attenuated by -33 dB or more relative to the nominal level will be considered Loss Of Signal.

5.3.2.2 E1 Signal Setup

Touching the navigation area button which represents the receiver's E1 layer will display the screen.

Follows To make the currently selected receiver follow either the transmitter or Port 1 receiver (i.e. copy its settings), touch the drop-down menu in the navigation area and select the relevant value. The default setting is **None**. Note that the Port 1 receiver cannot follow the Port 2 receiver.

Frame tab page

The **Frame** tab page contains the following parameters:

Port 1	Port 2 App	plication Selector			
Tx →		E1		Follows	
Rx →		El		None 🔻	
Frame Content CAS				Transmission On LOS Deviation 0 ppm	• ?
PCM frame: Off	On]		E1	
CRC4 and E-bits: Off)		• No frame	Í
				No Sync Alignment CAS	×
BERT	<u>SETUP</u>	TEST RESULT	- 💾 🖻 🖘	Traffic ▶ 🚺 💽 17 26	

Line code

Use the ${\bf Line\ code}$ radio buttons to select transmission line code ${\bf HDB3}$ or ${\bf AMI}.$

For normal 2 Mbps systems choose HDB3. AMI is for special applications only.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) the status of the PCM frame.

CRC4 and E-bits

Use the **CRC4 and E-bits** radio buttons to enable (**On**) or disable (**Off**) the corresponding bit in the received signal. Use buttons in left frame for setting CRC4. Use buttons in right frame for setting E-Bit.

HINT

If it is uncertain whether the **CRC4 and E-bits** are supported in the monitor signal, it is recommended to select the **Off** mode.

Content tab page

The **Content** tab page contains the following parameters:

Port 1 Port 2	Application Selector			
Tx Tx	El		Follows	
Rx→	El		None 🔻	\bigcirc
Frame Content CAS		Trans	mission On DS	
Pattern type: PRBS 11	•	Devi	ation 0 ppm	?
Normal Inverse		El	AIS	Ĕ,
User pattern: 1/32 Bits]	•	No frame	Ż
time slots:		•	No Sync	
			Alignment	X
			CAS	
			Traffic	
BERT SE	TUP TEST RESULT	📑 🖓 🔊 👔	/ 🗾 11:22	

Pattern type

Select the requested pattern. Refer to <u>Pattern type</u> in "Transmitter Setup".

For testing of data rates from 64 kbps to 2 Mbps in a 2 Mbps line, ITU-T 0.150 recommends PBRS 11 to be used. For testing at the 2 Mbps rate, PRBS 15 is recommended in ITU-T 0.150.

Select 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

Pattern time slots

Touch the **Pattern time slots** graphics and use the launched dialog box to select the timeslot which will receive the Channel Content signal. Set and clear timeslots as relevant.

Choose timeslot								
	1	2	3	4	5	6	7	1
8	9	10	11	12	13	14	15	
16	17	18	19	20	21	22	23	
24	25	26	27	28	29	30	31	
Set all Clear all Cancel Ok								

CAS tab page

The **CAS** tab page contains the following parameters:

Port 1 Port 2	2 Application Selector	
Tx ←	E1	Follows
Rx →	E1	None 🔽 🕑
CAS: Off	On	Transmission on • LOS Oppm Deviation 0 ppm • AIS • • AIS • • No frame • • No Sync • Alignment ×
		Traffic
BERT	<u>SETUP</u> TEST RESULT	📴 🗃 🐟 🕅 V 💽 17:27

CAS

Use the **CAS** radio buttons to enable (**On**) or disable (**Off**) the reception of a CAS signaling multiframe in time slot 16 of the received signal.

5.3.3 Status Information

This section describes the status information available for the E1 layer in the status area of the **Ports Setup** screen.

5.3.3.1 Status Summary

The status summary displayed for the E1 layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/Error The middle part of the status area gives you access to alarm and error information for the selected interface. The current status is indicated by the lamp color.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.

- **Monitor Buttons** At the bottom of the status area are below buttons that give you access to various monitor information. By touching a button, you can launch the corresponding information display.
 - Alignment
 - CAS
 - Traffic

5.3.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Selecto	or			1
Tx ←		E1			Follows	
Rx →		E1			None	
_E1					Transmission	on 🔵
Signal level	• 1	dB			• LOS	
Deviation	0	ppm			Deviation 0 pp	m ?
	0	bps			E1	
Bit rate	2 048 000	bps			AIC	
					AIS	r S 7
Pattern Bit rate	64 000	bps			😑 No frame	
					No Sync	
					Alignment	X
					CAS	
					Traffic	
BERT	SETUR		SULT 💾)	≫ V ⊡ 17:2	7

This screen presents detailed information about the current physical status of the received signal at the 2 Mbps E1 layer.

The physical status information consists of the following parameters.

Signal level

The Signal Level indicators show the attenuations (in dB) of the currently received signals compared to a nominal signal.

The nature of the levels depend on the Input Level setup for each receiver (Terminate or Monitor):

- In Terminate mode, the attenuation is assumed to be caused by a cable.
- In Monitor mode, linear attenuation is assumed.

Deviation

The deviation from the nominal bit rate is shown for each receiver in both ppm and bps. The nominal bit rate is 2 048 000 bps.

Bit rate

The actual bit rate of each receiver is shown (in bps).

Pattern Bit rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

5.3.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2 Application Selector	
Tx ←	El	Follows
Rx →	El	None 🔽 🕑
Alarms LOS AIS No frame No CRC4 MF Distant No Sync No CAS MF Distant MF	Errors FAS Pattern CRC4 CRC4 MFAS E-Bit Code Pattern slip Frame slip	Transmission On LOS Deviation Oppm E1 AIS No frame No Sync Alignment CAS Traffic
BERT	<u>SETUP</u> TEST RESULT 🔐	🗃 🔿 🧏 V 💽 17:27

This screen contains detailed alarm and error information related to the E1 interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- AIS: Alarm Indication Signal
- No frame: No Frame
- No CRC4 MF: No Cyclic Redundancy Check 4 Multi Frames
- Distant: Distant
- **No Sync**: No Synchronization
- No CAS MF: No Channel-Associated Signaling Multi Frames
- Distant MF: Distant Multi Frames

Errors

- FAS: Frame Alignment Signal
- Pattern: Pattern
- CRC4: Cyclic Redundancy Check 4
- CRC4 MFAS: Cyclic Redundancy Check 4 Multiplex Frame Alignment Signal
- E-Bit: E-Bit Error
- Code : Code
- Pattern slip : Pattern slip
- Frame slip : Frame slip

5.3.3.4 Alignment

Touching the **Alignment** button in the status area of the **Ports Setup** screen displays the status shown below.

This screen provides information on the frame alignment when available. The frame alignment information includes the 16 first FAS/NFAS words of the CRC4 multiframe.

If multiframe is not available, the frame information will show 16 FAS/NFAS words in sequence.

The following color indicators are used:

- Green: Cyclic Redundancy Check bits
- Orange: Bits used to indicate received faulty sub-multiframes
- Purple: Remote alarm indication
- Yellow: Spare bits reserved for national use.

5.3.3.5 CAS

Touching the **CAS** button in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Se	ector			
Tx →		El			Follows	
Rx →		E1			None 🔻	
CAS MFAS-Signal MFAS word CAS Bits_Port 1 and Port 2	Port 1 00001011		Port 2		Transmission On LOS	0
1: 1111 3: 1001 5: 1001 7: 1001	-	2: 1 4: 1 6: 1 8: 1	001 001 001 001		0 ppm	?
11: 1001 13: 1001 15: 1001 17: 1001 19: 1001		10: 1 12: 1 14: 1 16: 1 18: 1 20: 1	001 001 001 001 001		AISNo frame	Í
21: 1001 23: 1001 25: 1001 27: 1001		22: 1 24: 1 26: 1 28: 1	.001 .001 .001 .001		No Sync	
29: 1001		30: 1	.001		Alignment	X
Set red pattern: 1111		Set yellow pattern	: 0000		CAS	
BERT	<u>SE</u>	<u>TUP</u> test	RESULT	🔐 🔿	rramc	

This screen gives information on the CAS (Channel Associated Signaling) signaling when available. It displays the state of the four signaling bits in both directions for all 30 channels. Activity is indicated with bold characters.

CAS MFAS-Signal

This field shows the status of the CAS MFAS-Signal.

Port1, Port2

This field shows the MFAS bits.

CAS Bits, Port1 and Port2

This table shows the status of the CAS Bits in the two ports.

Use of colors For easy recognition of special bit combinations, coloring is available. Use the **Set red pattern** and **Set yellow pattern** buttons to launch the respective setup dialog boxes.

The color pattern consists of four binary digits. The minimum and the maximum acceptable value is 0000 and 1111, respectively. Touch the digit buttons to set the relevant value and then touch **Ok**.

To clear the whole word e.g. to make the line ready for new digit settings, touch the **Clear all** button.

5.3.3.6 Traffic

Touching the **Traffic** button in the status area of the **Ports Setup** screen displays the status shown below.

	Port 1	Port 2	Application Selecto	or		
	Tx ←		E1		Follows	
	Rx →		E1		None 🔽	
	Frame	1 Pattern	2	3	Transmission On LOS	0
8 13	2	9	10 14	11	0 ppm	?
16		17 21	18 22	19 23	AIS	₽
24 28	1	25	26 30	27	 No frame No Sync 	
				10101 10101	Alignment CAS	×
		61			Traffic	

This screen shows the activity of the speech channels represented on the 2 Mbps line. You can switch between a traffic display and a view of the time slot content.

			Ро	t1]			Poi	rt 2			l		A	ppl	icat	ion	S	elec	to	r		J											
	T]←														1														Follow			
	R>	1]→														E1														None		-	
0 2	0	0 0	1	1 0	11	L	1 1 2	0	0 0	0 0	0	0 0	0	2	0	1	0 :	1 0	1	0 1	L	3 ¹ 2	0) 1	0	1 (01	0 1	IJ	Tr	ans	missio	n	On	\bigcirc
4 ¹ ₂	0	1 0	1	01	0 1	L	5 ¹ 2	0	1 () 1	0	1 0	1	6 <mark>1</mark>	0	1	0 3	10	1	0 1	L	7 ¹ 2	0) 1	0	1 (01	0 1	L	D	evi)S ation			
8 1 2	0	1 0	1	01	0 1	L	9 1 2	0	1 () 1	0	1 0	1	10 2	20	1	0 3	10	1	0 1	1	12	C) 1	0	1 (01	0 1		ł				0 ppm	
122	0	10	1	01	0 1	1	13 1 2	0	1 () 1	0	10	1	14	2	1	0 1	10	1	0 1	1	15 1 2	C) 1	0	1 (01	0 1		E:	1				
16 ¹ 2	1	00	1	1 0	0 1	1	72	0	1 () 1	0	10	1	18 2	2	1	0 :	1 0	1	0 1	1	9 1 2	0) 1	0	1 (01	0 1		I	• 4	AIS			
20 2	0	10	1	01	0	2	21 1 2	0) 1	0	1 0	1	22	2	1	0		1	0 1	2	23 ¹ 2) 1	0		2 1	0 1		I	• •	lo fran	10		1
24 2	0	1 0	1	01	0.	1	25 ¹ 2	0		1	0	1 0	1	26	2	1	0.		1	0.	2	27 2		, 1	0		2 1	0.		I	ľ	vo iran	le		
28 1 28 2	0	1 0	1	0 1	0.	2	29 1 29 2	0	1 (1	0	1 0	1	30 2		1	0.	1 0	1	0.	3	³¹ ₂		, 1	0	. (5 1	0.	-	I	• 1	lo Syn	с		
																																Alignm	nen	ıt	X
																												Ro	ot			CA	s		
																																Traff	ïc		
			BE	RT								<u>s</u>	E	TU	P		те	sт		F	RES	su	LT				H		(🤿	*	×	V 🖻	j	17 29	

The busy / idle status of channel is displayed.

Touching this button will convert the table to display time slot content.

Touching this button will convert the graphic to display traffic.

lcon	PCM description
\rangle	Flags detected in currently selected signaling channel
	Channel activity

Touching **Reset** button will clear icons.

5.4 DS1/J1 Setup and Status

DS1/J1 represents the 1.544 Mbit/s PDH layer. The **Ports Setup** screen gives you access to the PDH layer setup for the transmitter and/or receiver of the currently selected port.

DS1/J1 allows transmission of data streams that are nominally running at the same rate, however allowing for some variation in the speed around a nominal rate (+/-125 ppm variation around 1.544 Mbit/s).

The DS1/J1 interface uses the electrical Bantam connectors.

5.4.1 Transmitter Setup

5.4.1.1 Physical Setup

When the transmitter is set up with only a DS1/J1 interface, touching the Tx button in the navigation area will launch the following screen.

Port 1	Port 2 Application Selector		
Tx →	DS1/J1		
	DS1/J1		
Off Of	E3 E4 DS1/J1 DS3	Transmission On • LOS	
Input sensitivity- line buildout:	Rx long haul; Tx 0 db	Deviation 0 ppm	?
Drop and insert:	Off V	DS1/J1	E
Timing source:	Internal 🔍 🔵	OOF	
		AIS	
		• LSS	
		CAS	×
BERT	<u>SETUP</u> test result 🔐 🗃	እ V 🛃 09 11	

For the switching method between PDH Tx and DSn Tx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touching **Off** radio button disables the transmitter.

This screen allows you to make the physical setup of the PDH transmitter in DS1/J1 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

The output signal goes to the corresponding Bantam connector.

Input sensitivity - Select the line build-out. The available values are: **line buildout**

- Rx short haul; Tx 1-133 ft
- Rx short haul; Tx 133-266 ft
- Rx short haul; Tx 266-399 ft

- Rx short haul; Tx 399-533 ft
- Rx short haul; Tx 533-655 ft
- Rx gain mode (Monitor)
- Rx long haul; Tx 0 db
 Rx long haul; Tx -7.5 db
- Rx long haul; Tx -15 db
- Rx long haul; Tx -22.5 db
- **Drop and insert** Select the source for the transmitter. The whole contents of *Port 1* and *Port 2* can be selected as a source. **Off** is identical to normal transmitter mode.
- **Timing source** Select the clock source.

Internal: Internal clock of the module **External**: The clock provided from the Ext Clock connector **Received**: The clock generated from the received signal

When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

5.4.1.2 DS1/J1 Signal Setup

Touching the navigation area button which represents the transmitter's DS1/J1 layer will display the screen.

Follows To make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its settings) when using Port 1 and Port 2, touch the drop-down menu in the navigation area and select the **Tx1**. The default setting is **None**. Note that the Port 1 transmitter cannot follow the Port 2 transmitter.

Frame tab page

The **Frame** tab page contains the following parameters:

Port 1	Port 2 Appli	ication Selector			
Tx→		DS1/J1		Follows	
Rx →	(DS1/JI		None	
Frame Content	CAS	•	تا م	LOS LOS	On O
Line code:	AMI B8ZS		D	·S1/J1	0 ppm
Frame type:				OOFAIS	Í
				• LSS	
				CAS	×
BERT	<u>SETUP</u>	TEST RESULT	+ 🗈 🛪 🖇	V 📑 09	:09

Line code

Use the **Line code** radio buttons to select transmission line code **AMI** or **B8ZS**.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) insertion of PCM frame in the transmitted signal.

When PCM frame is set to Off, many of the following transmitter parameters are insignificant.
Frame type

Use the **Frame type** radio buttons to select the relevant frame type: **J1**, **ESF** or **SF/D4**.

Content tab page

The **Content** tab page contains the following parameters:

Port 1	Port 2	Application Se	lector				
Tx ←		DS1/J1			Follows		
Rx →		DS1/J1			None	•	\bigcirc
Frame Content	CAS				Transmission • LOS	On	
Pattern type:	PRBS 11))			DS1/J1	0 ppm	?
User pattern:	Normal Inverse))			• OOF		₽ 1
Unused time slots: Pattern time slots:	01010101)			LSS		
		1			CAS		×
BERT	<u>SE</u>	<u>TUP</u> теsт	RESULT	💾 📑 🕅	8 V 📑 0	9:09	

Pattern type

Select the pattern to be inserted in the transmitted signal. Refer to <u>Pattern</u> type in "E1 Setup and Status". Available patterns are:

- Off
- User [32] bit, User [2048] bit
- PRBS 9 to PRBS 31
- QRSS 20
- Fox Pattern, Fox (CMA3000)
- All 0's, All 1's
- Alternating 1:1, Alternating 1:3, Alternating 1:7, Alternating 3:24

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

Unused time slots

Touch the **Unused time slots** button and use the dialog box to define the unused time slots.

In the **Unused Time Slots** dialog box, change the individual bits by touching on the relevant bit keys - this will toggle the bit key's binary value from logic 1 to 0 or vice versa. Touch **Ok** to accept the changes and close the dialog box.

Pattern time slots

Touch the **Pattern time slots** graphics and use the dialog box to select the timeslots in which the pattern will be inserted. Set and clear timeslots as relevant.

-	Choose timeslot							
	0	1	2	3	4	5	6	7
	8	9	10	11	12	13	14	15
1	16	17	18	19	20	21	22	23
	Set all			ear all		Cance		Ok

CAS tab page

The **CAS** tab page contains the following parameters:

Port 1 Port 2 Application Selector	
DS1/J1	Follows
Rx → D51/JI	None 🔽 🕑
Frame Content CAS CAS: Off On Channel: 1 Bits: 11 Other Channels Sf Other bits:	Transmission On LOS Deviation Oppm DS1/J1 OOF AIS LSS

CAS

Use the **CAS** radio buttons to enable (**On**) or disable (**Off**) the insertion of a CAS signaling.

Touch the **Channel**, **Bits** and **Other bits** fields to define the contents of a selectable CAS channel as well as the remaining channels.

5.4.2 Receiver Setup

5.4.2.1 Physical Setup

When the receiver is set up with only a DS1/J1 interface, touching the $\mathbf{R}\mathbf{x}$ button in the navigation area will launch the following screen.

For the switching method between PDH Rx and DSn Rx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **DS1/J1** radio button. Touching **Off** radio button disables the receiver.

This screen allows you to make the physical setup of the PDH receiver in DS1/J1 mode. It can also be used to inspect the current status of the selected port.

The input signal is taken form the corresponding Bantam connector.

Input mode Select the mode of input.

Terminate

Used when the instrument is used as a tester and the receiver is the only device connected to the line. The input impedance is nominal.

Bridged

Used when the receiver is connected directly in parallel to a line carrying live traffic. Please observe that this way of connecting may disturb the monitored line - connection through a protected monitor point, as well as using the input mode **Monitor**, is recommended instead.

Monitor

Used when connecting to protected monitoring points. The input impedance is nominal.

5.4.2.2 DS1/J1 Signal Setup

Touching the navigation area button which represents the receiver's DS1/J1 layer will display the screen.

FollowsTo make the currently selected receiver follow either the transmitter or Port
1 receiver (i.e. copy its settings), touch the drop-down menu in the
navigation area and select the relevant value. The default setting is None.
Note that the Port 1 receiver cannot follow the Port 2 receiver.

Frame tab page

The **Frame** tab page contains the following parameters:

Port 1	Port 2 Application Selector	
Tx ←	DS1/J1	Follows
Rx →	DS1/j1	None 🔻 🍉
Frame Content CAS		Transmission • LOS Deviation 0 ppm
PCM frame:	BBZS	DS1/J1
Frame type:	ESF SF/D4	• AIS
BERT	<u>SETUP</u> TEST RESULT	

Line code

Use the $\mbox{Line code}$ radio buttons to select transmission line code AMI or B8ZS.

For normal 1.544 Mbps systems choose **B8ZS**. **AMI** is for special applications only.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) the status of the PCM frame.

Frame type

Select the relevant frame type: J1, ESF or SF/D4.

Content tab page

The **Content** tab page contains the following parameters:

Port 1	Port 2 Application Selector	
Tx →	DS1/J1	Follows
Rx →	DS1/J1	None 🔻 💌
Frame Content CAS Pattern type: PRBS 11		Transmission LOS Deviation 0 ppm 2
User pattern:	al Inverse	OOF AIS LSS
		CAS
BERT	SETUP TEST RESULT 🔐 🗃	🔊 🛪 V 🛃 09:11

Pattern type

Select the requested pattern. Available patterns are same as the transmitter setup. Refer to <u>Pattern type</u> in "E1 Setup and Status".

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

Pattern time slots

Touch the **Pattern time slots** graphics and use the launched dialog box to select the timeslot which will receive the Channel Content signal. Set and clear timeslots as relevant.

CAS tab page

The **CAS** tab page contains the following parameters:

Port 1 Port 2	Application Selector		
Tx	DS1/J1	Follows	
Rx→	DS1/J1	None	
Frame Content CAS		Transmission • LOS Deviation DS1/J1 • OOF • AIS • LSS	on ? 0ppm ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
BERT SE	<u>TUP</u> TEST RESULT	CAS	9:12

CAS

Use the \mbox{CAS} radio buttons to enable (\mbox{On}) or disable (\mbox{Off}) the reception of a CAS signaling.

5.4.3 Status Information

This section describes the status information available for the DS1/J1 layer in the status area of the **Ports Setup** screen.

5.4.3.1 Status Summary

The status summary displayed for the DS1/J1 layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/Error The middle part of the status area gives you access to alarm and error information for the selected interface. The curent status is indicated by the lamp color.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.

- **Monitor Buttons** At the bottom of the status area are below buttons that give you access to various monitor information. By touching a button, you can launch the corresponding information display.
 - CAS

5.4.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

	Port 1	Port 2	Application Selector			С
	Tx←[DS1/J1			
	Rx →		DS1/J1			
{	_DS1/J1				Transmission On	
	Signal Level	• 1	dB		• LOS	
ł	Deviation	0	ppm		Deviation 0 ppm	?
τ		0	bps		DS1/J1	
	Bit Rate	1 544 000	bps		0.005	E,
					OOP	r = 7
	Pattern Bit Rate	64 000	bps		AIS	
					LSS	
					CAS	X
					CAS	
	BERT	SETUR	TEST RESULT	🔐 🖓 📑	✗ V № 09:12	

This screen presents detailed information about the current physical status of the received signal at the 1.5 Mbps DS1/J1 layer.

The physical status information consists of the following parameters.

Signal Level

The Signal Level indicators show the attenuations (in dB) of the currently received signals compared to a nominal signal.

The nature of the levels depend on the Input Level setup for each receiver (Terminate or Monitor):

- In Terminate mode, the attenuation is assumed to be caused by a cable.
- In Monitor mode, linear attenuation is assumed.

Deviation

The deviation from the nominal bit rate is shown for each receiver in both ppm and bps. The nominal bit rate is 1 544 000 bps.

Bit Rate

The actual bit rate of each receiver is shown (in bps).

Pattern Bit Rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

5.4.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen contains detailed alarm and error information related to the DS1/J1 interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- AIS: Alarm Indication Signal
- OOF: Out of Frame
- RAI: Remote Alarm Indication
- LSS: Link Status Signal

Errors

- F-Bit: F-Bit Error
- Pattern: Pattern
- CRC-6: Cyclic Redundancy Check 6
- S-Bit: S-Bit Error
- **BPV**: Bipolar Violation
- Pattern Slip: Pattern slips
- **EXZ** : Excessive zeros

5.4.3.4 CAS

Touching the **CAS** button in the status area of the **Ports Setup** screen launches the status shown below.

This screen gives information on the CAS (Channel Associated Signaling) signaling when available. It displays the state of the two signaling bits in both directions for all 24 channels. Activity is indicated with bold characters.

Use of colors For easy recognition of special bit combinations, coloring is available. Use the **Set red pattern** and **Set yellow pattern** buttons to launch the respective setup dialog boxes.

The color pattern consists of four binary digits for ESF/J1 frame. For SF/D4 frame, it consists of two binary digits. The minimum acceptable value is 00 or 0000, and the maximum acceptable value is 11 or 1111. Touch the digit buttons to set the relevant value and then touch **Ok**.

To clear the whole word e.g. to make the line ready for new digit settings, touch the **Clear all** button.

5.5 E3 Setup and Status

E3 represents the 34.368 Mbit/s PDH layer. The **Ports Setup** screen gives you access to the PDH layer setup for the transmitter and/or receiver of the currently selected port.

E3 allows transmission of data streams that are nominally running at the same rate, however allowing for some variation in the speed around a nominal rate (+/-125 ppm variation around 34.368 Mbit/s).

The E3 interface uses the electrical BNC connectors.

5.5.1 Transmitter Setup

5.5.1.1 Physical Setup

When the transmitter is set up with only an E3 interface, selecting the **Tx** button in the navigation area will launch the following screen.

For the switching method between PDH Tx and DSn Tx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **E3** radio button. Touching **Off** radio button disables the transmitter.

This screen allows you to make the physical setup of the PDH transmitter in E3 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Timing source Select the clock source.

Internal: Internal clock of the module **External**: The clock provided from the Ext Clock connector **Received**: The clock generated from the received signal When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

5.5.1.2 E3 Signal Setup

Touching the navigation area button which represents the transmitter's E3 layer will display the screen shown below.

Follows

To make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its settings) when using Port 1 and Port 2, touch the drop-down menu in the navigation area and select the **Tx1**. The default setting is **None**. Note that the Port 1 transmitter cannot follow the Port 2 transmitter.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) insertion of PCM frame in the transmitted signal.

Pattern type

Select the pattern to be inserted in the transmitted signal. Available patterns are same as the transmitter setup. Refer to <u>Pattern type</u> in "E1 Setup and Status". Available patterns are:

- Off
- User [32] bit, User [2048] bit
- PRBS 9 to PRBS 23
- Fox Pattern, Fox (CMA3000)
- All 0's, All 1's
- Alternating 1:1, Alternating 1:3, Alternating 1:7, Alternating 3:24

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

5.5.2 Receiver Setup

5.5.2.1 Physical Setup

When the receiver is set up with only an E3 interface, selecting the **Rx** button in the navigation area will launch the following screen.

For the switching method between PDH Rx and DSn Rx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **E3** radio button. Touching **Off** radio button disables the receiver.

This screen allows you to make the physical setup of the PDH receiver in E3 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Input mode Select the mode of input.

Terminate

Used when the instrument is used as a tester and the receiver is the only device connected to the line. The input impedance is nominal.

Monitor

Used when connecting to protected monitoring points. The input impedance is nominal.

5.5.2.2 E3 Signal Setup

Touching the navigation area button which represents the receiver's E3 layer will display the screen shown below.

Follows

To make the currently selected receiver follow either the transmitter or Port 1 receiver (i.e. copy its settings), touch the drop-down menu in the navigation area and select the relevant value. The default setting is **None**. Note that the Port 1 receiver cannot follow the Port 2 receiver.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) the status of the PCM frame.

Pattern type

Select the requested pattern. Available patterns are same as the transmitter setup. Refer to <u>Pattern type</u> in "E1 Setup and Status".

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

5.5.3 Status Information

This section describes the status information available for the E3 layer in the status area of the **Ports Setup** screen.

5.5.3.1 Status Summary

The status summary displayed for the E3 layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/ErrorThe middle part of the status area gives you access to alarm and errorStatusInformation for the selected interface. The curent status is indicated by the
lamp color.

that contains all alarms/errors.

5.5.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

	Port 1	Port 2		Application Selector	r				
	Tx ←			E3	_	_	Follows		
	Rx →			E3			None		
ſ	_E3						Transmission	On	
1	Signal level	•	0	dB			 LOS 		
F	Deviation		0	ppm			Deviation	0 ppm	?
			0	bps			E3		
	Bit rate	34 368	000	bps					5
ι									1
	Pattern bit rate	34 099	512	bps			No frame		
							No sync		
									V
	BERT	SE	TUF	P TEST RE	SULT 🔐 🗃	(🤿	» V 💌	17 34	

This screen presents detailed information about the current physical status of the received signal at the E3 layer.

The physical status information consists of the following parameters.

Signal level

The Signal level indicators show the attenuations (in dB) of the currently received signals compared to a nominal signal.

The nature of the levels depend on the Input Level setup for each receiver (Terminate or Monitor):

- In Terminate mode, the attenuation is assumed to be caused by a cable.
- In Monitor mode, linear attenuation is assumed.

Deviation

The deviation from the nominal bit rate is shown for each receiver in both ppm and bps. The nominal bit rate is 34 368 000 bps.

Bit rate

The actual bit rate of each receiver is shown (in bps).

Pattern bit rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

5.5.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen contains detailed alarm and error information related to the E3 interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- AIS: Alarm Indication Signal
- No frame: No frame
- Distant: Distant
- No sync: No synchronization

Errors

- **FAS words**: Frame Alignment Signal words
- Pattern error: Pattern error
- Code : Code
- Pattern slips : Pattern slips

5.6 DS3 Setup and Status

DS3 represents the 44.736 Mbit/s PDH layer. The **Ports Setup** screen gives you access to the PDH layer setup for the transmitter and/or receiver of the currently selected port.

DS3 allows transmission of data streams that are nominally running at the same rate, however allowing for some variation in the speed around a nominal rate (+/-125 ppm variation around 44.736 Mbit/s).

The DS3 interface uses the electrical BNC connectors.

5.6.1 Transmitter Setup

5.6.1.1 Physical Setup

When the transmitter is set up with only a DS3 interface, selecting the \mathbf{Tx} button in the navigation area will launch the following screen.

Port 1 Port 2 Application Selector		С.
Tx ← DS3		
Rx → DS3		\bigcirc
Off E1 E3 E4 DS1/J1 ODS3	Transmission On • LOS	
Line buildout: High-0 ft	Deviation 0 ppm	?
Timing source: Internal 💌 🔵	DS3	
	 AIS 	Í
	• LSS	
	Alignment	×
🛄 🚃 BERT <u>SETUP</u> TEST RESULT 🔐 🖗 💎	🏽 V 🗾 14 59	

For the switching method between PDH Tx and DSn Tx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **DS3** radio button. Touching **Off** radio button disables the transmitter.

This screen allows you to make the physical setup of the PDH transmitter in DS3 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Line buildout Select the line build-out. The available values are:

- High-0 ft
- DSX-450 ft

Timing source Select the clock source.

Internal: Internal clock of the module **External**: The clock provided from the Ext Clock connector **Received**: The clock generated from the received signal

When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

5.6.1.2 DS3 Signal Setup

Touching the navigation area button which represents the transmitter's DS3 layer will display the screen shown below.

Por	t1	Port 2	oplication Sele	ctor			
Тх)+[DS3		Follows		
Rx)→[DS3		None	•	\bigcirc
PCM frame:	Off	On	FEAC Code:	FEAC Off	Transmission • LOS Deviation	On	•
Frame type:	🔵 м13	C-Bit	USR FEAC code:	000000	DS3	0 ppm	
Pattern type:	PRBS 23	▼			LOF		E.
	Normal	Inverse			AIS		ľ
User pattern:		1/32 Bits			LSS		
					Alignme	nt	×
II BE	RT	SETUP	TEST			09:20	

Follows

To make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its settings) when using Port 1 and Port 2, touch the drop-down menu in the navigation area and select the **Tx1**. The default setting is **None**. Note that the Port 1 transmitter cannot follow the Port 2 transmitter.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) insertion of PCM frame in the transmitted signal.

Frame type

Use the **Frame type** radio buttons to specify either an **M13** frame or a **C-Bit** frame.

Pattern type

Select the pattern to be inserted in the transmitted signal. Refer to <u>Pattern</u> type in "E1 Setup and Status". Available patterns are:

- Off
- User [32] bit, User [2048] bit
- PRBS 9 to PRBS 31
- QRSS 20
- Fox Pattern, Fox (CMA3000)
- All 0's, All 1's
- Alternating 1:1, Alternating 1:3, Alternating 1:7, Alternating 3:24

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

FEAC Code

When 'Frame type' is set to **C-Bit**, allows you to specify the FEAC (Far-End Alarm and Control) channel code.

USR FEAC code

When 'FEAC Code' is set to **User**, touch the **USR FEAC code** button and use the launched dialog box to define the FEAC code.

5.6.2 Receiver Setup

5.6.2.1 Physical Setup

When the receiver is set up with only a DS3 interface, selecting the \mathbf{Rx} button in the navigation area will launch the following screen.

For the switching method between PDH Rx and DSn Rx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **DS3** radio button. Touching **Off** radio button disables the receiver.

This screen allows you to make the physical setup of the PDH receiver in DS3 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Input mode

Select the mode of input.

Terminate

Used when the instrument is used as a tester and the receiver is the only device connected to the line. The input impedance is nominal.

Monitor

Used when connecting to protected monitoring points. The input impedance is nominal.

5.6.2.2 DS3 Signal Setup

Touching the navigation area button which represents the receiver's DS3 layer will display the screen shown below.

Por	t1	Port 2	pplication Selector			
Тх			DS3	_	Follows	
Rx)→[DS3		None 🔻	
PCM frame:	Off	On			Transmission On LOS Deviation 0 ppm	•
Frame type:	🔵 м13	C-Bit			DS3	
Pattern type:	PRBS 23	•)		LOF	
	Normal	lnverse			• AIS	<u></u>
User pattern:		1/32 Bits)		• LSS	
					Alignment	×
III BER BEI	RT	<u>SETUP</u>	TEST RESUL	т 💾 🗃 🤿	▶ V ▶ 09 20	

Follows

To make the currently selected receiver follow either the transmitter or Port 1 receiver (i.e. copy its settings), touch the drop-down menu in the navigation area and select the relevant value. The default setting is **None**. Note that the Port 1 receiver cannot follow the Port 2 receiver.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) the status of the PCM frame.

Frame type

Use the **Frame type** radio buttons to specify either an **M13** frame or a **C-Bit** frame.

Pattern type

Select the requested pattern. Available patterns are same as the transmitter setup. Refer to <u>Pattern type</u> in "E1 Setup and Status".

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

5.6.3 Status Information

This section describes the status information available for the DS3 layer in the status area of the **Ports Setup** screen.

5.6.3.1 Status Summary

The status summary displayed for the DS3 layer consists of the following information:

Physical Status The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.

- Alarm/Error Status
 The middle part of the status area gives you access to alarm and error information for the selected interface. The curent status is indicated by the lamp color.
 A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.
 Monitor Button
 At the bottom of the status area are a number of buttons that give you access to various capture/monitor information. By touching a button, you can launch the corresponding information dialog.
 - Alignment

5.6.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Selector			
Tx →		DS3		Follows	
Rx →		DS3		None 🔻	\bigcirc
_DS3]	Transmission On	
Signal level	• 0	dB		LOS	
Deviation	0	ppm		0 ppm	?
	0	bps		DS3	
Bit rate	44 736 000	bps		LOF	9
					Ê
Pattern Bit rate	44 209 696	bps		AIS	
				LSS	
					X
				Alignment	
BERT	SETUR	P TEST RESULT	🕂 📑 🔿	🔉 V 🗾 09 20	

This screen presents detailed information about the current physical status of the received signal at the DS3 layer.

The physical status information consists of the following parameters.

Signal level

The Signal level indicators show the attenuations (in dB) of the currently received signals compared to a nominal signal.

The nature of the levels depend on the Input Level setup for each receiver (Terminate or Monitor):

- In Terminate mode, the attenuation is assumed to be caused by a cable.
- In Monitor mode, linear attenuation is assumed.

Deviation

The deviation from the nominal bit rate is shown for each receiver in both ppm and bps. The nominal bit rate is 44 736 000 bps.

Bit rate

The actual bit rate of each receiver is shown (in bps).

Pattern Bit rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

5.6.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen allows you to launch the screen shown below.

This dialog box contains detailed alarm and error information related to the DS3 interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- AIS: Alarm Indication Signal
- LOF: Loss of Frame
- RAI: Remote Alarm Indication
- IDLE: Idle Signal
- LSS: Link Status Signal

Errors

- **BPV Error**: Bipolar Violation error
- Pattern error: Pattern error
- **Pattern slips**:Pattern slips
- Parity error: Parity error
- F-bit error: F-bit error
- **C-bit error**: C-bit error
- FEBE: Far End Block Error

5.6.3.4 Alignment

Touching the **Alignment** button in the status area of the **Ports Setup** screen displays the status shown below.

	Port 1	Port 2	Ap	plication Select	or					
Тх				DS3				Follows		
Rx	→			DS3				None		\bigcirc
F Frame	e F	Bits		Stuffing Bits				Transmission	On	
0	1	.001		000	x	(- Bits	11	Deviation	0 ppm	?
1	1	.001		000	Р	- Bits	11	DS3		
2	1	.001		000	M	1 - Bits	010	LOF		
3	1	.001		000				AIS		
, 4	1	.001		000				• LSS		
5	1	.001		000						×
6	1	.001		000				Alignme	nt	
	BERT		SETUP	TEST R	ESULT	•	📑 🛪	🛚 🖌 💌	09:21	

Alignment status when the frame type is M13

		Port 1 Port 2	Applicatio	n Selector					
	Tx		DS	3			Follows		
	Rx	_)→[DS	3			None		\bigcirc
F	Frame 0	F - Bits	X - Bits	11	AIC		Transmission • LOS Deviation	On	0
F	1	1001	P - Bits	00	Na	0	DS3	-0 ppm	
	2 3	1001	M - Bits	010	CP FEBE	000	LOFAIS		ľ
U	4	1001	Data Link	00000000000			LSS		
	6	1001	FEAC	000000000000000000000000000000000000000	0000		Alignme	nt	×
		BERT <u>SE</u> 1	Г <u>UP</u> теs	T RESULT	Ē¥	•	🕸 V 💌	09 21	

Alignment status when the frame type is C-bit

This screen provides information on the frame alignment when available. The frame alignment information includes the below bits contained in seven multiframe.

- F-Bits: Framing bits
- Stuffing Bits: Bit stuffing control bits
- X-Bits: Message bits
- P-Bits: Parity bits
- M-Bits: Multiframing bits
- AIC: Application Identification Channel
- Na: Reserved Network Application bit
- CP: C-bit Parity
- FEBE: Far-End Block Error
- Data Link: Data links for application
- FEAC: Far-End Alarm and Control Channel

5.7 E4 Setup and Status

E4 represents the 139.264 Mbit/s PDH layer. The **Ports Setup** screen gives you access to the PDH layer setup for the transmitter and/or receiver of the currently selected port.

E4 allows transmission of data streams that are nominally running at the same rate, however allowing for some variation in the speed around a nominal rate (+/-125 ppm variation around 139.264 Mbit/s).

The E4 interface uses the electrical BNC connectors.

5.7.1 Transmitter Setup

5.7.1.1 Physical Setup

When the transmitter is set up with only an E4 interface, selecting the **Tx** button in the navigation area will launch the following screen.

For the switching method between PDH Tx and DSn Tx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **E4** radio button. Touching **Off** radio button disables the transmitter.

This screen allows you to make the physical setup of the PDH transmitter in E4 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Timing source Select the clock source.

Internal: Internal clock of the module **External**: The clock provided from the Ext Clock connector **Received**: The clock generated from the received signal When **External** or **Received** is set, the right hand lamp indicates whether clock is detected or not.

5.7.1.2 E4 Signal Setup

Touching the navigation area button which represents the transmitter's E4 layer will display the screen shown below.

Follows

To make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its settings) when using Port 1 and Port 2, touch the drop-down menu in the navigation area and select the **Tx1**. The default setting is **None**. Note that the Port 1 transmitter cannot follow the Port 2 transmitter.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) insertion of PCM frame in the transmitted signal.

Pattern type

Select the pattern to be inserted in the transmitted signal. Refer to <u>Pattern</u> type in "E1 Setup and Status". Available patterns are:

- Off
- User [32] bit, User [2048] bit
- PRBS 9 to PRBS 31
- QRSS 20
- All 0's, All 1's
- Alternating 1:1, Alternating 1:3, Alternating 1:7, Alternating 3:24

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

5.7.2 Receiver Setup

5.7.2.1 Physical Setup

When the receiver is set up with only an E4 interface, selecting the **Rx** button in the navigation area will launch the following screen.

For the switching method between PDH Rx and DSn Rx, refer to <u>Physical</u> <u>Setup</u> in "E1 Setup and Status". Touch **E4** radio button. Touching **Off** radio button disables the receiver.

This screen allows you to make the physical setup of the PDH receiver in E4 mode. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Input mode Select the mode of input.

Terminate

Used when the instrument is used as a tester and the receiver is the only device connected to the line. The input impedance is nominal.

Monitor

Used when connecting to protected monitoring points. The input impedance is nominal.

5.7.2.2 E4 Signal Setup

Touching the navigation area button which represents the receiver's E4 layer will display the screen shown below.

Poi	rt 1	Port 2	oplication Se	elector					
Тх)-[E4				Follows		
Rx)→[E4				None		\bigcirc
PCM frame:	Off) On				Tr D	ansmission LOS eviation	On	0
Pattern type:	PRBS 23							0 ppm	
	Normal	Inverse				E	• AIS		
User pattern:	8,	/2048 Bits				- 1	O No frame		ľ
						- 1	No Sync		
									×
III BEB BE	RT	<u>SETUP</u>	TEST	RESULT	0 ₩ C	* 🛪 *	V 💽	17:35	

To make the currently selected receiver follow either the transmitter or Port 1 receiver (i.e. copy its settings), touch the drop-down menu in the navigation area and select the relevant value. The default setting is **None**. Note that the Port 1 receiver cannot follow the Port 2 receiver.

PCM frame

Use the **PCM frame** radio buttons to enable (**On**) or disable (**Off**) the status of the PCM frame.

Pattern type

Select the pattern to be inserted in the transmitted signal. Available patterns are same as the transmitter setup. Refer to <u>Pattern type</u> in "E1 Setup and Status".

Touch 'Normal' or 'Inverse' pattern type.

User pattern

User pattern field is enabled if Pattern type is set to **User [32] bit** or **User [2084] bit**. Touch the **User pattern** field and use the launched **Pattern Editor** dialog box to define the user pattern. Depending on the selected pattern type, different user pattern setup options will be available.

The length can be any length from 1 bit to 32 bits or from 1 bit to 2048 bits.

5.7.3 Status Information

This section describes the status information available for the E4 layer in the status area of the **Ports Setup** screen.

5.7.3.1 Status Summary

The status summary displayed for the E4 layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/ErrorThe middle part of the status area gives you access to alarm and errorStatusinformation for the selected interface. The curent status is indicated by the
lamp color.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.

5.7.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Selector			
Tx ←		E4		Follows	
Rx →		E4		None 🔻	\bigcirc
E4 Signal level Deviation	• 0	dB		Transmission On LOS Deviation	2
Bit rate	-4 139 263 996	bps		E4	
Pattern Bit rate	138 502 984	bps		• No frame	Ż
				No Sync	×
BERT	SETUR	P TEST RESULT	r 📑 📑 🤋	🗱 V 💽 17 35	

This screen presents detailed information about the current physical status of the received signal at the E4 layer.

The physical status information consists of the following parameters:

Signal level

The Signal level indicators show the attenuations (in dB) of the currently received signals compared to a nominal signal.

The nature of the levels depend on the Input Level setup for each receiver (Terminate or Monitor):

- In Terminate mode, the attenuation is assumed to be caused by a cable.
- In Monitor mode, linear attenuation is assumed.

Deviation

The deviation from the nominal bit rate is shown for each receiver in both ppm and bps. The nominal bit rate is 139 264 000 bps.

Bit rate

The actual bit rate of each receiver is shown (in bps).

Pattern Bit rate

This field shows the effective bit rate of the patterns received (that is, the number of pattern bits received per second).

5.7.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen contains detailed alarm and error information related to the E4 interface. Status is indicated by the use of <u>colored Lamp icons</u>.

Alarms

- LOS: Loss of Signal
- AIS: Alarm Indication Signal
- No frame: No frame
- Distant: Distant
- No Sync: No synchronization

Errors

- **FAS words**: Frame Alignment Signal words
- Pattern error: Pattern error
- Pattern slips: Pattern slips

5.8 APS

The Automatic Protection Switching (APS) test described in this section is applicable for SDH/SONET/PDH/DSn interfaces.

For APS test of OTN interface, refer to APS in "OTN Application".

On SDH/SONET

K1,K2 protocol decoding is performed, as well as measurement of average and maximum duration of a specified reference event (alarm/error).

On PDH/DSn

The average and maximum duration of a specified reference event is measured, as is the number of events that have occurred.

5.8.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to each interface type are described in separate sections:

- SDH Setup and Status
- SONET Setup and Status
- E1 Setup and Status
- DS1/J1 Setup and Status
- E3 Setup and Status
- <u>DS3 Setup and Status</u>
 <u>E4 Setup and Status</u>
- <u>E4 Setup and Status</u>
 <u>OTN Setup and Status</u>

Please refer to the sections relevant for your current port setup requirements.

5.8.2 Test Setup

5.8.2.1 Threshold

Touching the **Threshold** button in the navigation area displays the following screen.

Port 1 Port 2	Application Selector	
	Threshold	
_Measurement Condition	· · · · ·	
Reference event:	LOS	
Error free period:	1ms	
_Threshold		
Max reference duration:	50.000	ms
		×
APS	SETUP TEST RESUL	.T 🔐 🔿 🖗 🛛 🔀 15 27

This screen contains the parameters for setting up the threshold values for alarms/errors and Pass/Fail status.

Measurement Condition Reference event

Use the drop-down menu(s) to select the relevant event (**LOS**, **LOF**, **OOF** etc.).

Error free period

Appears when SDH or SONET layer is present. If a reference event is not generated within the time of this cycle, end the switching time measurement.

Threshold Max reference duration

Allows you to specify the maximum duration of the selected reference event(s). Valid values are from **0.000 ms** to **10000.000 ms** for SDH/SONET and **0.000 ms** to **4000.000 ms** for PDH.

The setup of the protection and the requests used in an 'APS' test on SDH or SONET layer is done on the Test Results > Details screen.

5.8.3 Test Results

5.8.3.1 Summary

Touching the **Summary** button in the navigation area will display the screen shown below.

Port 1 Port 2	R	æsult File Browser			
2014-06-03 15:28:03	o	00:00:20			
Summary				Detailed	
					•
Average switching time	AIS		0.000 ms		?
Max. time Max reference duration			0.000 ms 50.000 ms		Í
					X
APS	SETUP	TEST RESULT	📑 💾 🔿	🔿 🧏 V 🗾 15:28	

This screen presents a summary of the results of the APS test.

For each port the following information is displayed:

- Reference event
- Average switching time
- Max. time
- Max reference duration

5.8.3.2 Details for APS

Touching the **Detailed** button will display the screen shown below.

This screen shows the duration of all reference events, both in a list and in a graphic representation. This screen contains the summary field displayed below the list.

Summary field Consists of the minimum, maximum, and average automatic switching times in milliseconds, the specified Max. reference duration value, the number of measurements.

Presents the automatic switching times in list-form. information

Graphical The graphical presentation consists of a bar diagram of the automatic presentation switching times. Results may be affected by unexpected alarms/errors. Protocol Shows the screen displaying the Protocol interpretation.

interpretation

List-form

Protection interpolation button appears when SDH or SONET layer is present.

5.8.3.3 Protocol interpretation

Touching the Protocol interpretation button on the Detailed screen will display the following screen.

Port 1 Port 2 Resu	ılt File Browser	
2014-06-06 18:53:02 00:0	00:18	
Summary		Detailed
Configuration Ring Short path Request Request Destination node (K1): O FOh 11110000b Source node (K2): O OOh 0000000b Apply Not applied	Protocol interpretation Number (APS protocol) K1: Lockout of protection (span) Destination node (K1) 0 k2: Short Source node (K2) 0 k1: Lockout of protection (span) Destination node (K1) 0 k2: Short Source node (K2) 0 k1: Lockout of protection (span) Destination node (K1) 0 k2: Short Source node (K2) 0	Back
APS SETUP	TEST <u>RESULT</u> 🔋 🗃	🛪 🛿 V 🗾 18:53

This screen shows a protocol interpretation for the selected port (i.e. detailed decoding information about K1 and K2 during the test). It also contains a set of parameters that allow you configure the requests used in the test.

Configuration Select the configuration from below.

- Ring: MS shared protection ring / BLSR (Bidirectional line switched ring)
- Linear: Linear VC trail protection / UPSR (Unidirectional path switched ring)
- **Short path**, **Long path**: Type of substitute path for Ring protection.
- 1+1 architecture, 1:n architecture: Type of the architecture for Liner protection.

Request Request

Use the drop-down menu to select the relevant request type (**Forced switch**, **Signal fail** etc.).

Destination node / Source channel (K1)

Touch the field to set the channel number of the K1 byte (bits 5-8). Possible values are ${f 0}$ to ${f 15}$.

Source node / Bridged channel (K2)

Touch the field to set the channel number of the K2 byte (bits 1-4). Possible values are ${f 0}$ to ${f 15}$.

Apply

Touch the **Apply** button to apply the specified APS request to the SDH/SONET transmitter.

5.9 BERT

1101 1011 The Bit Error Rate Test (BERT) described in this section is applicable for SDH/SONET/PDH/DSn interfaces.

For BERT of OTN interface, refer to **<u>BERT</u>** in "OTN Application".

As the name implies, the bit error rate is defined as the rate at which errors occur in a string of transmitted bits:

BER = number of bit errors / total number of bits received

The interface specification on the Ports Setup screen determines whether the current application is SDH, SONET, PDH and/or DSn BERT.

5.9.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to each interface type are described in separate sections:

- SDH Setup and Status
- SONET Setup and Status
- E1 Setup and Status
- DS1/J1 Setup and Status
- <u>E3 Setup and Status</u>
 DS3 Setup and Status
- <u>E4 Setup and Status</u>
- OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

5.9.2 Test Setup

5.9.2.1 Control

When you go to the test setup of the SDH/SONET/PDH/DSn BERT application, the following screen is displayed.

	Application Se	elector	
Control		Thresholds	
Interval length: 5 seconds	; ▼		
Start action: Immediate		Start at: 2001-01-01 00:00:00	
Stop function: Manual sto	op 🛛 🔻	Stop at: 2001-01-01 00:00:00	?
Memory allocation: Use all sto	orage 🛛 🔻	Estimate of 00d:03:25:45 test duration	
Performance Parameters			
SONET: M.2101.1(M.2100)	▼ E1: M.2100		I
Time period: 15 minutes	▼ E3: M.2100		
_Allocation[%]	E4: M.2100		
Mux: 100.00 STS-3: 100.0	DS1/J1: M.2100		×
STS-1: 100.00 VT-1.5/VT-2: 100.0	DS3: M.2100		
BERT	SETUP TEST	RESULT 💾 🗃 🤿 🔉 V 🗺 15 1	8

This screen contains the parameters that are generally required in a BERT test setup.

Interval length

Allows you to specify the length of the measurement intervals.

Start action

Allows you to specify when the measurement is started.

- If **Immediate** is selected, the measurement starts when you touch the **Start** button.
- Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** button is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- **Use all storage**: When Network Master's memory became full with measured data, the whole measurement is stopped.
- **Continuous**: When Network Master's memory became full with measured data, the oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. During an ongoing measurement, the estimate will be recalculated periodically.

The titles of ITU-T Recommendation are below.

- **G.821** Error performance of an international digital connection operating at a bit rate below the primary rate and forming part of an Integrated Services Digital Network
- **G.826** End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections
- **G.828** Error performance parameters and objectives for international, constant bit-rate synchronous digital paths
- **G.829** Error performance events for SDH multiplex and regenerator sections
- **G.8201** Error performance parameters and objectives for multi-operator international paths within the Optical Transport Network (OTN)
- **M.2100** Performance limits for bringing-into-service and maintenance of international multi-operator PDH paths and connections
- **M.2101.1** Performance limits for bringing-into-service and maintenance of international SDH paths and multiplex sections
- M.2401 Error performance limits and procedures for bringing-intoservice and maintenance of multi-operator international paths and sections within an optical transport network
- **M.2110** Bringing into service international multi-operator paths, sections and transmission systems

OTN-related

This item appears if 'BERT on OTN' is running.

ΟΤΝ

G.8201, M.2401 (M.2110)

Performance

Parameters

15 minutes, 1 hour, 2 hours, 24 hours, 7 days

Allocation

Touching the **Setup** button launches the dialog box. Refer to <u>Performance</u> <u>Parameters</u> in "OTN Application" .

SDH/SONET-related

SDH/SONET G.826, G.828+G.829, M.2101.1(M.2100)

Time period 15 minutes, 1 hour, 2 hours, 24 hours, 7 days

Allocation [%] 0.00 to 100.00%

PDH/DSn-related

E1

G.821, G.826, M.2100, G.821 (expired)

E3 G.826, M.2100

E4

G.826, M.2100

DS1/J1

G.821, G.826, M.2100, G.821 (expired)

DS3

G.826, M.2100

5.9.2.2 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen.

Port 1 Port 2	Application Selector	
Control	Thresholds	
BERT Threshold Monitoring Pattern Errors Count Ratio Ratio[%] Threshold: 0	Transport Interface Evaluation Item: Any Alarm or Error Evaluation type: Count Pass Pass threshold	 <
BERT SETU	19 <u>TEST</u> RESULT 🕌 🗃 🛜 🔀 V 🔀 15:19	×

This screen contains the parameters for setting up the various threshold values (i.e. limits) for errors and Pass/Fail status that are used during the monitoring.

Pattern Errors Allows you to enable monitoring of pattern errors (i.e. bit errors) and to set up a threshold value for the bit error ratio.

Choose whether the threshold is specified as an absolute value or a percentage, using the **Count**, **Ratio** and **Ratio** [%] radio buttons, and then specify the value in the **Threshold** field.

Transport Select the checkbox to enable the transport-related parameters.

Interface

Select the item to evaluate from **OTN**, **SDH**, **SONET**, **E4**, **E3**, **E1**, **DS3** or **DS1/J1**.

Evaluation item

Select the item to evaluate. If selecting other than **Any Alarm or Error**, another menu appears.

Evaluation type

Select the relevant type.

Pass & fail threshold

Touch the left-hand number to set the lower limit for "Warning". Touch the right-hand number to set the lower limit for "Fail". The lower limit of "Fail" must be equal to or greater than the lower limit of "Warning" (defining a "Within limits" range in between them).

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

5.9.3 Test Results

5.9.3.1 Summary

When you go to the test results of the SDH/SONET/PDH/DSn BERT application, the following screen is displayed.

Port 1	Port 2		Result File Brows	ser		
2014-06-17 16:31:	:27		00:03:55			
Summary				Pointer movement	Statistics	
BER Pattern errors Threshold:	Error count	Rate 0	0.00	Transport Within limits (SDH - LOS Current Lower) Upper 0 100	•
St	tatistics Category	Sta	atus	Pattern		
SDH - Alarms/E	rrors			PRBS 23	▼]	
SDH - Quality				- 🗸 Pattern Error Insert	ion	
SDH - Performa	ance			Insertion:	Alternate 🛛	
SDH - TCM				Normal length:	100	X
				Error length:	1	
BER BE	RT	SETUP	test <u>R</u>	ESULT 📑 🗃	🔿 🎙 V 🗾 16:35	

This screen contains a summary of OTN/SDH/SONET/PDH/DSn BERT results.

StatisticsThe lamp icon in Status column shows the Pass or Fail results for each
category. Touching the Status column displays the statistics results.

TransportDisplays the results of Transport test. This result appears if 'Transport'
checkbox is selected in Test Setup screen.

Pattern Select the pattern.

Pattern ErrorSelect the checkbox to enable the pattern error insertion.Insertion

Insertion

Select the timing of the error insertion from the drop-down menu.

- **Off**: Stops the error insertion.
- Manual
- 1E-04 to 1E-10
- Alternate

Burst length

If 'Insertion' is set to **Manual**, touch the button and set the burst length to insert.

Normal length

If 'Insertion' is set to **Alternate**, touch the button and set the normal length.

Error length

If 'Insertion' is set to **Alternate**, touch the button and set the error length.

5.9.3.2 Pointer Movement

Touching the **Pointer Movement** button in the navigation area displays the screen shown below.

This screen presents a detailed analysis of pointer movements in the monitored signal. The results are displayed as a graph, showing the positions of a specific pointer over time.

Using the graph area itself and the controls displayed below the graph, you can specify which <u>pointer's data</u> is displayed as well as <u>zoom</u> in on specific details of the graph.

In general, you use direct touch-manipulation of the graph area to zoom in and use the controls to zoom out.

Pointer source	Pointer Select the radio button corresponding to the pointer whose movements you want to monitor.
Zoom	To zoom in, select a zoom area directly in the graph area by drawing a rectangle with a finger or the stylus (delivered with the instrument).
	When releasing the finger or stylus, the graph area zooms in to show the selected part of the graph.
To zoom out, use the view settings below the graph:

View mode

Used to set the x-scaling for the graph. The possible settings are:

- Last 24H to Last 5m: Shows a sliding graph area with max. width of 24 hours to 5 minutes.
- View all: Shows a graph area with a width as the duration of the test.
- **Custom**: This is automatically selected when the graph area is touchmanipulated.

Max pointer value

Used to set the y-scaling of the view. The maximum amplitude of the plot always originates from the zero line.

5.9.3.3 Statistics

Touching the **Statistics** button in the navigation area displays the screen shown below.

		Resu	ult File Browser			
2014-06-03 15:22:	57					
Summary			Poi	nter movement	Statistics	
Total	SDH - Alarms/E	Frrors		SI prefix		
15:22:57		Pc	ort 1	Por	t 2	
2014-06-03	Alarms	Count	Ratio	Count	Ratio	?
2014-06-03	LOS	C	0.00	0	0.00	
15:23:07	LOF	C	0.00	0	0.00	
2014-06-03 15:23:12	OOF	C	0.00	0	0.00	E ST
2014-06-03	MS-AIS	C	0.00	0	0.00	
2014-06-03	MS-RDI	C	0.00	0	0.00	
15:23:22	AU-AIS	C	0.00	0	0.00	
Current	AU-LOP	C	0.00	0	0.00	X
2014-06-03 15:23:32	HP-TIM	C	0.00	0	0.00	
BEI	रा	SETUP	TEST <u>RESUL</u>	<u>T</u> 🔐 🕬 🤋	🔉 🔀 V 💽 15	23

This screen presents a detailed analysis of the test results. You can choose to view either the total results from measurement start or the results of a specific interval during the test. You can also zoom in on a specific result item. The results can be displayed either in table (list) form or as a graph.

Selecting which results to view

Selecting the interval time

Touch the **Total** button to switch the total values measured in all interval times. The start time of measurement is displayed on the button.

Touching the button in left side **Back** field shows the measured values in the interval time. The end time of the interval is displayed on the button.

Current button is displayed at left bottom when the measurement is running. Touching the **Current** button shows the measured values in the current interval time.

The slide-out panel on the left-hand side of the screen contains the following functions:

- Only show intervals that contains errors
- Time format

If you have stopped measurement during the interval time, the measurement results of current interval are discarded. The log of current interval is not displayed in **Back** field.

In this case, result data are re-calculated excluding the data of current interval when the measurement is stopped. This causes that "Count" and "Ratio" displayed after the measurement will be different from that of during measurement.

The sum of interval time (multiplied interval time by the number of back logs) may not match the differential time between displayed time at left top and right top after the measurement.

Selecting type of Open the middle drop-down menu in the top row of buttons to select which results you want displayed on the screen.

- OTN
 - Alarms/Errors
 - Performance
- SDH
 - Alarms/Errors
 - Quality
 - Performance
 - **TCM**
- SONET
 - Alarms/Errors
 - Quality
 - Performance
 - TCM
- E1
 - Alarms/Errors
 - Performance
- E3
 - Alarms/Errors
 - Performance
 - E4
 - Alarms/Errors
 Performance
- DS1/J1
- DS1/J1 ^ Alarr
 - Alarms/Errors
 Performance
- DS3
 - Alarms/Errors
 - Performance

Studying a specific result Touch a specific cell in a result table to zoom in on the corresponding result item. The **Count** and **Ratio** fields are displayed on a **Zoom** tab page. A **Time vs. Statistics** tab page is also available. Touch the **Back** button to return to the statistics screen.

	Result File Br	rowser			
2014-06-03 15:24:33	00:01:21				
Summary		Pointer I	movement	Statistics 📃	
Total 2014-06-03 15:24:33				Back	
Back 2014-06-03 15:24:38					?
2014-06-03 15:24:43				1	
2014-06-03				–	ľ
152453 Ratio					
2014-08-03 1524-58		3.	12	E-6	×
15:25:53					
BERT SE	TUP TEST	<u>RESULT</u>	💾 🕒 🖘 🛛	🛚 🗸 💽 15 25	

Selecting how results are displayed

Selecting notation

Select the required notation for the results from the notation drop-down menu.

- Unformatted e.g. 71892
- SI prefix e.g. 71.892 k (k means "kilo")
- Engineering e.g. 71.892E3
- Scientific e.g. 7.1892E4

Results

Results are displayed according to your choice. OTN appears when 'BERT on OTN' is running.

OTN Alarms/Errors Refer to Results in "OTN Application" **OTN** Performance Refer to **Results** in "OTN Application" SDH Alarms/Errors Alarms **Errors** SDH Quality Frequency MUX AU VC-4/3 **TU VC-3** TU VC-12/11 **Bulk AU** Pointer **TU Pointer** Justification *1 SDH Performance MUX AU VC-4/3 **TU VC-3** TU VC-12/11 SDH TCM Alarms **Errors** SONET Alarms/Errors Alarms Errors SONET Quality Frequency MUX

STS-3c/1 **TU VC-3** VT-2/1.5 Bulk **STS Pointer VT** Pointer Justification *1 SONET Performance MUX STS-3c/1 **TU VC-3** VT-2/1.5 SONET TCM Alarms Errors E1 Alarms/Errors Alarms **Errors** E1 Performance Results **FAS** errors **Pattern errors CRC4 errors** E-Bit errors*² E3 Alarms/Errors Alarms **Errors** E3 Performance **FAS** errors **Pattern errors** E4 Alarms/Errors Alarms **Errors** E4 Performance **FAS** errors **Pattern errors** DS1/J1 Alarms/Errors Alarms Errors DS1/J1 Performance **FAS** errors Pattern errors **CRC-6** errors DS3 Alarms/Errors Alarms **Errors** DS3 Performance **FAS** errors **Pattern errors**

*1: Justification appears when 'PDH Rx' or 'DSn Rx' is selected.
*2: E-Bit errors appears when 'E-bit' is set to On in Frame tab of E1 receiver.
*3: CRC6 errors appears when 'ESP' or 'J1' is selected.

5.10 RTD

The Round-Trip Delay (RTD) test measures the time that the data which is transmitted by the transmitter returns to the receiver.

The RTD test described in this section is applicable for SDH/SONET/PDH/DSn interfaces.

For RTD test of OTN interface, refer to RTD in "OTN Application".

5.10.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to each interface type are described in separate sections:

- SDH Setup and Status
- <u>SONET Setup and Status</u>
- E1 Setup and Status
- DS1/J1 Setup and Status
- E3 Setup and Status
- DS3 Setup and Status
- <u>E4 Setup and Status</u>
- OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

5.10.2 Test Setup

5.10.2.1 Control

When you go to the test setup of the RTD application, the following screen is displayed.

This screen allows you to configure the RTD test conditions for the currently selected port(s).

Test Condition Allows you to define the test duration in one of two ways:

Mode

• Single - Used to perform RTD test once.

• **Repeat** - Used when a *persistent RTD test* is needed.

Measurement period

Select the measurement period from **0.5 seconds** to **10 seconds**.

5.10.2.2 Threshold

Touching the **Threshold** button in the navigation area displays the following items.

Threshold Maximum limit Allows you to specify a threshold value of RTD in micro seconds (μs).

5.10.3 Test Results

5.10.3.1 Summary

Touching the **Summary** button in the navigation area will display the screen shown below.

Port 1 Port 2		Result File Browser		
2014-06-03 15:35:43		00:00:09		
Summary			Detailed	
Measurement count Minimum delay	/		439.6 us	?
Average delay Maximum delay			439.6 us 439.7 us	Í
Maximum limit		10000	0000.0 us	
				×
📕 👌 RTD	SETUP	TEST <u>RESULT</u>	💾 🗃 🛪 🧗 V 🗾 15 35	

This screen presents a summary of the RTD test results, for all of the ports included in the test. For each port, the information consists of:

- Measurement count
- Minimum, average, and maximum round-trip delay times in micro seconds
- Threshold value

5.10.3.2 Detailed

Touching the **Detailed** button in the navigation area will display the screen shown below.

Buttons for selecting the relevant port are displayed at the top of the screen, with a color indication of the pass/fail status of the test.

This screen presents the detailed results of an RTD test. The result is shown in both list-form and in a graphical presentation. This screen contains the summary field displayed below the list.

Summary field Consists of the minimum, average, and maximum round-trip delay times in microseconds, the number of measurements, the specified threshold value and measurement period.

List-form Presents the results of an RTD test in list-form. **information**

Graphical
presentationThe graphical presentation consists of a bar diagram of the round-trip delay
times.

6 Ethernet Applications

This chapter describes the graphical user interface (i.e. screens, subscreens and major dialogs) related to Ethernet applications. Sub-screens and dialogs are described under the main screen from which they are activated/launched.

The following setting and applications are available:

- Ethernet Setup and Status
- <u>BERT</u>
- <u>Cable</u>
- <u>Mon/Gen</u>
- Pass Through
- Ping
- <u>Reflector</u>
- <u>RFC 2544</u>
- <u>SAT 1564</u>
- <u>Traceroute</u>

6.1 Ethernet Setup and Status

Ethernet is globally used for data communication. Ethernet transmits variable length frames up to 1500 bytes in length, each containing a header with the source and destination addresses and a trailer that contains error correction data.

When setting an Ethernet application on OTN, in the navigation area of the **Ports Setup** screen, the Ethernet layer may initially be shown as a single **Ethernet** button which will change into a row of buttons when you touch it. Each button represents an aspect of Ethernet port setup and gives you access to the related setup options.

Note: The Ethernet interface uses the Electrical RJ45 connectors or the optical ports.

MU100010A Connector Panel

6.1.1 Physical Port Setup

When the port is set up with an Ethernet interface, touching the **Port** button in the navigation area will display the following screen.

This screen allows you to specify the physical port configuration of the currently selected <u>Ethernet</u> port. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

6.1.1.1 Port configuration parameters

Port definition You can use either a 'quick mode' or a 'detailed mode' to set up the port. Touching the long button at the top of the setup area will launch the <u>Port</u> <u>Setup</u> dialog box. Touching the arrow to the right of the button will open the *quick setup menu*.

Port 1 Port 2	Application 9	Selector			
Port → Stream Settings Answer: No	ne SyncE Off	IEEE 1588v2 Off	OAM 802.3ah	Filter On	
O SFP+ Forced 10 Gbps LAN	•	Transceiver Wavelength(Nomi	nal)	Link Speed:	₽
Off		1 310 nm Compliance	E)uplex: FDX	
Electrical Full Auto Negotiate		10G Base-LR	E	thernet	
Electrical Forced 100 Mbps FDX				• Traffic	?
SFP Forced 100 Mbps FDX				O MPLS frame	
SFP Forced 1000 Mbps FDX				O MPLS-TP frame	
SFP Auto Negotiate 1000 Mbps Fl	DX			O VLAN frame	
SFP+ 10 Gbps LAN				IEEE 1588v2	X
				OAM	
				Transceiver	-
BERT SET	UP TEST	RESULT) 🔿 🔊 🖇	¥V 🗾 09:11	

The quick setup menu contains a number of predefined port configurations (e.g. **Electrical | Forced 100 Mbps FDX**). The detailed mode dialog allows you to specify the configuration yourself.

Port 1	Port 2 Application Selector Port Setup	Filter
Port Stream	Electrical SFP SFP+	off
E Electrical Limited Au	Port mode Speed:	1 Ghps
Clock Configuration	Off Autonegotiate Forced Duplex:	FDX
inning source.	Forced Mode Selection Ethernet	
	Speed/Duplex: 10 FDX Traffi	c ?
	O MPLS	i frame
	O MPLS	G-TP frame
	O VLAN	I frame
	S	yncE
		DAM
	Cancel Ok Trans	sceiver
BERT	SETUP TEST RESULT 🕌 🗃 🕅 🛛 V 🖸	1 9:59

The detailed mode (**Port Setup**) dialog box is described in a separate section below.

Timing

Timing source

Select a source to synchronize all Ethernet transmitters to.

The possible sources are:

- Internal
- External
- GPS
- Received
- IEEE 1588v2

Received appears when the interface type is set to SFP or SFP+.

Transceiver Displays the Transceiver information.

6.1.1.2 Port Setup (detailed mode)

The contents of the dialog box (i.e. which parameters are displayed) depends on your combined choice of *interface type* and *port mode*.

Port Mode = Off Selecting the **Off** port mode will shut down the Ethernet port and stop the physical link.

Electrical +
AutonegotiateSelecting the Autonegotiate port mode with interface type specified as
Electrical will display the following parameters:

Auto Negotiation Advertisement

Allows you to set the speed and duplex capabilities that are advertised to the link partner.

- FDX can be set to 10, 100 and 1000.
- HDX can be set to 10 and 100.

Using the **Select all** will automatically set check marks in every checkbox.

1000 Mbps Specific Advertisement

Open the **Clock** drop-down menu to select one of the following settings:

Prefer master, Prefer slave, Master, or Slave.

Electrical +
ForcedSelecting the Forced port mode with interface type specified as Electrical
will display the following parameters:

Forced Mode Selection

Allows you to select the forced mode speed and duplex capabilities. Available choices are:

10 HDX, 10 FDX, 100 HDX, and 100 FDX

When autonegotiating with a port that is forced (i.e. not using autonegotiation), the duplex for the port that is using autonegotiation will automatically be set to Half Duplex (HDX) and the speed to the speed used by the forced port. It is thus possible to have a duplex mismatch without knowing it.

SFP + Autonegotiate Selecting the **Autonegotiate** port mode with interface type specified as **SFP** will display the following parameters:

Port 1 Port 2 Application Sel	elector	
Port Set	tup 🕐 🐣 🗖 🚽 👘	
Port Stream Interface Type	AM Filter 2.3ah Off	
Electrical SFP	SFP+	
O SFP Auto Negot Port mode	Speed:	5
Clock Configuration Off Autonegotia	tiate Forced Duplex:	
Timing source:	FDX C	
SFP AutoNegotiation	Ethernet	
1000Mbps FDX	• Traffic	
	O MPLS frame	
	O MPLS-TP frame	2
	O VLAN frame	7
	SyncE	4
	IEEE 1588v2	6
	ОАМ	
	Cancel Ok Transceiver	
BERT SETUP TEST	RESULT 🙀 🍽 🖘 🛛 🗸 🗺 12:46	

The negotiated speed appears.

SFP + Forced

Selecting the **Forced** port mode with interface type specified as **SFP** will display the following parameters:

Allows you to select the forced mode speed. Available choices are:

100 FDX, 1000 FDX

SFP+ + Forced When running 10G only **Forced** mode is available. The following parameters are displayed:

6.1.2 Ethernet Frame Setup

6.1.2.1 Stream

Touching the **Stream** button in the navigation area will display a screen like the one shown below.

Port 1	Port 2 App	lication Selector			
Port	Stream Settings Answer: Arp, Ping	SyncE IEEE 1588v2 Off Off	OAM 802.3ah	Filter Off	
ETI	H/IPv4	Сору То	• s	Link peed: 1 Gbps	₽
Dst MAC:	02-46-8A-CD-13-BB	ARP	! D	uplex: FDX	
Src MAC:	02-46-8A-CE-13-AA	Default		• Traffic	?
_IPv4				O MPLS frame	
Dst IP:	172.29.4.69		Setup	O MPLS-TP frame	E,
Src IP:	172.29.4.68	Онср 🔵		O VLAN frame	1
_ Payload pattern				SyncE	
User 32 bit			_	IEEE 1588v2	X
	1/32 Bits			OAM Transceiver	
📗 🚥 Bert	<u>SETUP</u>	TEST RESULT	🕂 📑 🖗	V 述 12 49	

This screen contains the setup of the Ethernet frame content transmitted by the Network Master. The exact layout depends on the current selection of layers (i.e. the various encapsulation and protocol headers composing the Ethernet frame). Including a layer will display its specifically related configuration options.

Only the most important (i.e. most frequently used) configuration parameters are displayed here for each specified layer. To access all parameters, launch the frame composition 'Stream Setup' dialog box accessible via the button in the top left-hand part of the screen.

Composing the Ethernet frame

The following headers/layers are available for the frame configuration:

You can use either a 'quick' mode or a 'detailed' mode to set up the selection of headers/layers. Touching the button at the top of the setup area will launch the *detailed mode* dialog box (the <u>Stream Setup dialog box</u>). Touching the arrow to the right of the button will open the *quick selection menu*.

Port 1 Port 2 Appli	cation Selector			
Port ← Stream Settings Answer: Arp, Ping	SyncE IEEE 1588v2 Off Off	OAM 802.3ah	Filter Off	
ETH/IPv4	Сору То	🚽 sb	Link eed: 1 Gbps	₽
Unframed		Du	plex: FDX	
ETH		Ett	nernet	
ETH / IPv4	Default	(Traffic	?
ETH / IPv4 / UDP		· · · · · · · · · · · · · · · · · · ·	O MPLS frame	
ETH / VLAN / IPv4		Setup	D MPLS-TP frame	
ETH / VLAN / IPv4 / UDP	ОНСР		O VLAN frame	Ĩ
ETH / VLAN(Q-in-Q) / IPv4			IEEE 1588v2	X
ETH / VLAN(Q-in-Q) / IPv4 / UDP			OAM	
			Transceiver	
BERT SETUP	TEST RESULT	💾 🗃 🛪 🖇	V 📑 12 49	

Follow

The quick selection menu contains a number of predefined frame configurations (e.g. **ETH/VLAN/IPv4**). The detailed mode dialog box allows you to specify the frame configuration yourself and also provides you with access to all configuration parameters available for the individual layers.

The detailed mode (**Stream Setup**) dialog box is described in detail below.

Follow another port

It is possible to let the Port 2 copy the setup from Port 1 by touching the **Follow** button. This button appears when the Port 1 settings can be copy to Port 2.

Multistreams

When the Multistream is active, the screen contains a **Stream** slide-out, which allows you to select the relevant stream to view/configure. The name of the slide-out control indicates which stream is currently being displayed.

At the top of the slide-out list you can switch between MAC, IP, and VLAN information as stream identification.

Copy frame content to other stream(s)

Сору То

This feature allows you to copy the frame content of the stream that you are currently configuring to all streams in another port or to a single stream.

Touching the **Copy To** button opens a drop-down menu from which you can select the relevant port and **All** or a specific stream.

Stream Setup (detailed mode dialog box)

This dialog box provides you with the advanced options for configuring the Ethernet frame content for a specific stream. Use the buttons at the bottom to select the stream.

The buttons on the left-hand side of the dialog box allow you to select the relevant layers. The current selection is shown at the top of the **Frame Content** area. Touching one of the layer buttons in the **Frame Content** area will display the setup parameters for that layer.

		Stream	Setup		? X
Layer 4	Frame Content				
None 🔻	ЕТН	VLAN	IPv4	Payload	Variable
Layer 3	Dst MAC:		02-46-8A-CD-13-BB		ARP !
Layer 2	Broadcast:		0.0	%	
SNAP	Src MAC:		02-46-8A-CE-13-AA		Default
LLC1	Ethertype	0x8100			P
VLAN					
РВВ					
MPLS-TP					
MPLS					
ETH					
	<u>.</u>				Close

The layer buttons are arranged in order from bottom to top and from left to right. The TCP/UDP protocols are the uppermost layer and Ethernet the lowermost as depicted below compared to the OSI model.

#	OSI layer name	Protocol				
4	Transport	TCP, UDP				
3	Network	IPv4 ⁽¹⁾ , IPv6 ⁽¹⁾ , ICMP ⁽²⁾ , ARP				
2	Data Link	IEEE 802.2 LLC Type 1/ LLC1 + SNAP ⁽¹⁾ , VLAN ⁽¹⁾ , PBB, MPLS-TP, MPLS, Ethernet ⁽¹⁾				
1	1 Physical Electrical / SFP / SFP+, 10 Mbps / 100 Mbps / 1000 Mbps / 10 Gbp FDX / HDX					
 ⁽¹⁾ Protocols can be excluded and the content changed. ⁽²⁾ ICMP appears in case of Ping application. 						

Encapsulation affects the Ping and RFC2544/Router Latency test, i.e. Ping replies will only be sent if the Ping request contains the same encapsulation as the one selected.

Touching **Close** will save your current settings and close the dialog. The settings done in dialog box will be reflected on the ports setup screen.

Layer configuration parameters

The settings related to each layer are described in detail below. The following layer buttons are available:

- ETH (MAC header)
- <u>MPLS-TP</u>
- <u>MPLS</u>
- <u>PBB</u>
- VLAN
- <u>LLC1</u>
- <u>SNAP</u>
- <u>IPv4</u>

- <u>IPv6</u>
- <u>UDP</u> • TCP
- <u>Payload</u>
- Variable

ETH

Touching the **ETH** layer button displays the parameters available for the Ethernet header.

		Application Soloctor Stream Setup			? X
Layer 4	Frame Content				
None 💌	ЕТН	IPv4	Payload	Variable	
Layer 3	Dst MAC:	02-46-8A-C	D-13-BB		.
Laver 2	Broadcast:	0.0)	%	
SNAP	Src MAC:	02-46-8A-0	E-13-AA	Default	
шсі	Ethertype	0x0800 (IPv4)			
VLAN					
РВВ					
MPLS-TP					¥
MPLS					<
ЕТН					
					Close

The Ethernet (MAC) header contains MAC addresses and Ethertype.

Dst MAC

The *Destination MAC address* can either be specified manually, or be decided based on an ARP lookup when IPv4 is set to Layer 3. To enable ARP, select the **ARP** checkbox to the right of the **Dst MAC** field.

The **!** button is an *instant ARP* button which when touched will perform an ARP lookup immediately, instead of waiting until the transmitter starts.

Broadcast

The *Broadcast Share* control is used to set the ratio between Unicast and Broadcast frames transmitting.

Src MAC

The *Source MAC address* can be specified manually, but the instrument comes with a default unique MAC address for each port.

If the **Default** checkbox is selected, the default unique MAC address is used.

Ethertype

When **IPv4** or **IPv6** is set to Layer 3, the Ethertype is automatically defined, based on the next protocol element. When **None** is set to Layer 3, it can be set between 0x05DD to 0xFFFF.

MPLSTouching the MPLS layer button displays the parameters available for the
MPLS protocol layer.

		Stream	Setup		? ×
Layer 4	Frame Content				
None 🔻	ETH	MPLS	IPv4	Payload	Variable
Layer 3	Level count: 2	•			3
Layer 2	#1: Label:	0	EXP: 0	Stack 0	ΠL: 32
SNAP	#2: Label:	0	EXP: 0	Stack 1	TTL: 32
шсі					2
VLAN					
РВВ					7
MPLS-TP					3
MPLS					C
ЕТН					
					Close

Level count

Up to eight levels of MPLS fields can be inserted in the frame. The number of MPLS fields is selected through the **Level count** drop-down menu, and each level is set up individually.

Label

Allows you to set up a denoting of the MPLS.

EXP

Allows you to set up the 3 bit value EXP (Experimental - used in MPLS to support differentiated services (priority)).

TTL

Allows you to set up the 8 bit value TTL (Time To Live).

MPLS-TP

Touching the **MPLS-TP** layer button displays the parameters available for the *MPLS-TP* protocol layer.

		Str	eam Setup			?>	0
Layer 4	Frame Content						
None 🔻	ETH	MPLS	MPLS-TP	IPv4	Payload	Variable	\triangleright
Layer 3			- I -				z
IPv4	MPLS-IP CON	roi word ena	bie				\geq
Layer 2	Control:	0x0000	+ Sequence Nun	nber	Auto increment		
SNAP	Dst MAC:		00-00-00-00-00	0-00		!	
шсі	Src MAC:		00-00-00-00	-00			2
VLAN	Ethertype	0x0800 (IPv4)					
РВВ							
MPLS-TP							1
MPLS							٢
ЕТН							
	<u></u>						
						Close	

When MPLS-TP is active, a control word can be inserted in the frame.

When MPLS-TP is active the **ARP** button will be moved away from the primary Ethernet field.

Auto increment

Selecting the **Auto increment** checkbox makes the sequence number in the RFC4448 control word increment automatically instead of being fixed to zero.

The remaining fields are described under the ETH layer.

PBB

Touching the *PBB* layer button displays the parameters available for the Provider Backbone Bridges (*MAC-in-MAC*) header.

		Stream	Setup		? ×
Layer 4	Frame Content				
None 💌	ETH	PBB	IPv4	Payload	Variable
Layer 3		VID/SID	PC	Р	TPID
IPv4 ▼	B-Tag:	0	DEI 0		8888
SNAP	I-Tag:	0	DEI 0		88E7
шсі				_	2
VLAN	Dst MAC:	00-00-00-00-00	0-00	ARP	<u> </u>
РВВ	Src MAC:	00-00-00-00-0	00-00		7
MPLS-TP	Ethertype: 0x08 (IPv4	00)			7
MPLS					6
ЕТН					
					Close

B-Tag

Allows you to set a VLAN Identifier (**VID**), a Drop Eligible Indicator (**DEI**) and a Priority Code Point (**PCP**).

Displays a Tag Protocol Identifier (**TPID**).

l-Tag

Allows you to set a VLAN Identifier (**VID**), a Drop Eligible Indicator (**DEI**), a Priority Code Point (**PCP**) and a User Customer Address (**UCA**). Displays a Tag Protocol Identifier (**TPID**).

Dst MAC

The *MAC-in-MAC destination address* can either be specified manually, or be decided based on an ARP lookup. To enable ARP, select the **ARP** checkbox to the right of the **Dst MAC** field.

The **!** button is an *instant ARP* button which when touched will perform an ARP lookup immediately, instead of waiting until the transmitter starts.

Src MAC

Allows you to specify the MAC-in-MAC source address.

Ethertype

Shows the type automatically depending on layer configuration. If the value is selectable, select the value by touching the field.

Touching the **VLAN** layer button displays the parameters available for the *Virtual LAN* protocol layer.

VLAN

Layer 4 Layer 3 Layer 3 Level (Pv4 *1: 1 Layer 2 *2: 1 *3: 1 VLAN *4: 1 PBB MPLS-TP	e Content ETH count: 4 D: 1045 D: 2036 D: 3126	PBB CF1	VLAN Priority: Priority:	0 1	≥v4 Ethertype	Payload 0x8100	Variable
None Layer 3 Level IPv4 Layer 2 SNAP ULC1 VLAN PBB MPLS-TP	ETH count: 4 D: 1045 D: 2036 D: 3126	PBB CFI	VLAN Priority: Priority:	0 1	Pv4 Ethertype	Payload 0x8100	Variable
Layer 3 Level (Pv4	count: 4	• CFI	Priority: Priority:	0	Ethertype	0x8100	
IPV4 #1: I Layer 2 #2: I ULC1 #3: I VLAN #4: I PBB MPLS-TP	D: 1045 D: 2036 D: 3126	(F)	Priority: Priority:	0	Ethertype Ethertype	0x8100	
SNAP #2: 1 LLC1 #3: 1 VLAN #4: 1 PBB MPLS-TP	D: 2036 D: 3126	CFI	Priority:	1	Ethertype	0+0100	
LLC1 #3: 1 VLAN #4: 1 PBB MPLS-TP	D: 3126				concrepte	0X8100	▼
VLAN #4: I PBB MPLS-TP		CFI	Priority:	2	Ethertype	0x8100	
PBB MPLS-TP	D: 4008	CFI	Priority:	3	Ethertype	0x0800 (IPv4)	
MPLS-TP							
MPLS							
ЕТН							
							Close

Virtual LAN (VLAN) is used to create independent logical networks within a physical network. When enabled, it adds a 16 bit IEEE 802.1Q field and a 16 bit Ethertype field to the header. The 802.1Q is separated into 3 parts.

VLAN affects the Ping and RFC2544/Router Latency test, i.e. when VLAN is enabled, only frames with VLAN tag will be accepted. Furthermore, Ping replies will only be sent if the Ping request contains the same VLAN ID as the one selected.

Level count

Up to eight levels of VLAN can be inserted in the frame. The number of VLAN fields is selected through the **Level count** drop-down menu, and each level is set up individually.

ID

Touching the **ID** (VLAN ID) button launches a setup dialog box from which it is possible to set up a denoting of the virtual LAN.

CFI

Selecting the **CFI** checkbox sets a 1-bit flag denoting whether MAC addresses inside the frame are in canonical format.

Priority

It is possible to set up the priority level of each frame.

When the VLAN level count is 2, the two VLAN levels will be designated S-VLAN and C-VLAN. S-VLAN is short for Service provider VLAN and C-VLAN is short for Customer VLAN.

Ethertype

When the Level count is more than one, select the type from **0x8100**, **0x88A8**, **0x9100** or **0x9200**.

When **IPv4** or **IPv6** is set to Layer 3, the Ethertype of highest level is automatically defined, based on the next protocol element. When **None** is set to Layer 3, it can be set between 0x05DD to 0xFFFF.

LLC1 Touching the **LLC1** layer button displays the parameters available for the *Logical Link Control* protocol layer.

		Stre	am Setup			? ×
Layer 4	Frame Content					
None 💌	ETH	PBB	LLC1	IPv4	Payload	Variable 📃 🕨
Layer 3	DSAP			6		2
IPv4	SSAP			6		
Layer 2	Control			3		
SNAP						
шсі						2
VLAN						
РВВ						2
MPLS-TP						7
MPLS						2
ETH						
						Close

The **DSAP**, **SSAP** and **Control** fields are set automatically, based on the upper protocol layer.

SNAP

Touching the **SNAP** layer button displays the parameters available for the *SubNetwork Access Protocol* protocol layer.

The **Protocol ID** is fixed to **0**, and the **Ethertype** field depends on the upper protocol layer.

'SNAP' is not possible without 'LLC1'.

IPv4

Touching the **IPv4** layer button displays the parameters available for the *Internet Protocol version 4* layer.

			Stream Set	up			? X
Layer 4	Frame Content						
None 💌	ETH	PBB	LLC1	SNAP	IPv4	Payload	Variable
Layer 3	Version, Heade	r length: 4, 5	5 (20bytes)	Total len	gth 60		2
IPv4 ▼	DSCP/TOS:		00h				
Layer 2	Identifier:		ABCDh	Aut	o increment		
	Flags:	MF	✓ DF	RES	Fra	gment offset:	0
MAN	TTL:		32	Protocol	:	FD	h
PBB	Checksum	#H4D34					,
MPI S-TP	Src IP:	1	72.29.4.68		CP	•	Setup 🧧
MPLS	Dst IP:	1	72.29.4.69				2
ETH	Gateway		Setup				
							Close

Version, Header length

Shows Version and Header length in the IPv4 header.

Total length

Shows Total length in the IPv4 header.

DSCP/TOS

When changing the **DSCP/TOS** (Differentiated Service Code Point/Type of Service) setting it is possible to define some handling characteristics of the datagram, originally defined in RFC 791. Other uses of the **DSCP/TOS** setting are VoIP, DiffServ and ECN.

Identifier

The *Identifier* is mainly used for uniquely identifying fragments of an IP datagram. When the **Auto increment** checkbox is selected, the Identifier will be different for each sent frame.

Flags, Fragment Offset

- If the **MF** (More Fragments) flag is set: When a packet is fragmented, all fragments have the MF flag set except the last fragment.
- If the **DF** (Don't Fragment) flag is set: When fragmentation is required to route the packet then the packet will be dropped.
- **RES** (Reserved) must be zero (i.e. not set).

TTL

TTL (Time To Live) defines the number of 'hops' a datagram can do before it no longer is forwarded.

Protocol

The **Protocol** field defines the upper/next layer protocol encapsulated in the IP datagram. Typical values in hex are: 1 = ICMP, 6 = TCP etc.

Src IP/Dst IP

Source IP address and *Destination IP address* can be entered using the format: 255.255.255.255.

When Multistream traffic is sent from one port to another, make sure that the source address on one port is the same as the destination address on the other port for each of the active streams. This applies both if the two ports are in one instrument and if they are in two different instruments.

Selecting the **DHCP** checkbox located next to the **Src IP** field will enable the Dynamic Host Configuration Protocol function.

Selecting the **DNS** checkbox located next to the **Dst IP** field changes the field name to **Hostname**, allowing you to specify the domain name server.

Touching the **Setup** button next to the virtual Lamp in the **Src IP** line will open the **DHCP/DNS Setup** dialog box.

	Stream	n Setup		? X)
Layer 4	Frame Content			
None 🗸	DHCP/DI	NS Setup	? ×	Variable
Layer 3				2
IPv4	Renew lease when link is reestablis	ned		
Layer 2	Get gateway servers through DHCP			
SNAP	Get DNS setup through DHCP		et: 0	
LLC1			FDh	
VLAN	Primary DNS:	0.0.0.0		
РВВ	Secondary DNS:	0.0.0.0		Setup
MPLS-TP	Current lease expire time	N/A		<u> </u>
MPLS	Renew now		Close	6
ЕТН				
				Close

- Selecting the **Renew lease when link is reestablished** checkbox enables the function that automatically renews the lease when the link is reestablished.
- Selecting the **Get gateway servers through DHCP** checkbox enables the function that automatically assigns the gateway.
- Selecting the **Get DNS setup through DHCP** checkbox enables the function that automatically assigns the DNS server.

- **Primary DNS** and **Secondary DNS** allow you to define these IPv4 addresses for the specific stream.
- When allocating IP addresses using DHCP, it is 'leased' for a certain period of time defined by the network. The time when the lease expires is indicated as *Current lease expire time*.
- Touching the **Renew now** button will renew the allocation of the IP address.
- Touching the **Close** button closes the dialog box.

Gateway/Network mask

Select the **Gateway** checkbox to enable the use of a gateway. When gateway is enabled and the gateway/source address mask falls outside the network mask, an ARP lookup for the gateway IP address will be made. The resulting MAC address is used as destination. Gateway is usually used with ARP enabled as well.

Touching the **Setup** button next to the **Gateway** checkbox will open the **Gateway Setup** dialog box, in which you can set up the default gateway and/or the network mask.

	Stream Setup
Layer 4	Frame Content
None 💌	ETH PBB LLC1 SNAP IPv4 Payload Variable
Layer 3	Version, Header length: 4, 5 (20bytes) Total length 60
IPv4 I▼	DSCP/TOS: 00h
Layer 2	Iden Gateway Setup
SNAP	Flag Default gateway: 0.0.0.0 ment offset: 0
VLAN	TTL: Network mask: 0.0.0.0 FDh
РВВ	Chec Store
MPLS-TP	Dst IP: 172.29.4.69 DNS
MPLS	Gateway Setup
	Close

IPv6

Touching the **IPv6** layer button displays the parameters available for the *Internet Protocol version 6* layer.

			Stream S	etup			? X	
Layer 4	Frame Content							
None 💌	ETH	PBB	LLC1	SNAP	IPv6	Payload	Variable	
Layer 3	Version:	6						z
IPv6	Traffic class:				00h			
Layer 2	Flow label:	[00000h			
SNAP	Payload length	2	8					
шсі	Next header:				FDh			2
VLAN	Hop limit:				32			J
РВВ	Src IP:	ſ	00	00:000:000	0:0000:0000:0	000:0000:000	00	, 14
MPLS-TP	Dst IP		0.0	00.0000.0000	0.0000.0000.0	000.0000.000	20	ł
MPLS	Docin.	L						e
ETH								
						• • • • • • • •	Close	I

Version

Shows Version in the IPv6 header.

Traffic class

Traffic class is similar to IPv4's **DSCP/TOS** and is used for the class and priority. This is defined in RFC 2474.

Flow label

The *Flow label* indicates that the datagram belongs to a specific sequence of traffic between a source and destination. The default value is **0**.

Payload length

Shows Payload length in the IPv6 header.

Next header

The *next header* indicates the upper/next layer protocol encapsulated in the IP datagram. Typical values in hex are: 1 = ICMP, 6 = TCP etc.

Hop limit

The *hop limit* defines the number of 'hops' a datagram can do before it no longer is forwarded.

Src IP/Dst IP

Source IP address and *Destination IP address* can be entered using the format *xxxx:xxxx:xxx:xxx:xxx:xxx:xxxx* (32 Hex values).

Touching the **UDP** layer button displays the parameters available for the *User Datagram Protocol* layer.

		Str	eam Setup			?>
Layer 4	Frame Content_					
UDP 🔻	ETH	PBB	IPv4	UDP	Payload	Variable
Layer 3	Src Port:		50	00		
[IPv4 ▼]	Dst Port-		50	50		
Layer 2						
SNAP	Length		64			
шсі	Checksum		#H9E89		Null	
VLAN						
PBB						
MPLS-TP						
MPLS						
ETH						
						Close

User Datagram Protocol is a core protocol of the Internet protocol suite. The UDP provides a minimal and simple interface between a network layer below and a session layer or application above. This protocol does not guarantee reliable and in-order delivery from sender to receiver.

Src Port

Source port identifies the sending port and should be assumed to be the port to reply to if needed. If not used, then it should be zero.

Dst Port

Destination port identifies the destination port and is required.

Length

Shows the packet length in bytes.

UDP

Checksum

Optionally, the Checksum may be forced to zero, by selecting the **Null** checkbox.

ТСР

Touching the **TCP** layer button displays the parameters available for the *Transmission Control Protocol* layer.

		St	ream Setup)		? X	3		
Layer 4	Frame Content								
ТСР	ETH	PBB	IPv4	ТСР	Payload	Variable	>		
Layer 3	Auto conne	ct		Listen mode					
Layer 2	Src Port:	5000		Dst Port:	5050				
SNAP	Seq number:	10		Auto increm	Auto increment				
LLC1	Ack number:	0]			2		
VLAN	Data offset:	5							
РВВ	Reserved:		00h]			2		
MPLS-TP	Flags	CWR	ECE	URG	🖌 АСК		7		
MPLS		PSH	RST	SYN	FIN		e		
ETH	Window:		0	Urgent pointer:		0			
	Checksum	#H4EBA				,			
L						Close			

Transmission Control Protocol is a core protocol of the Internet protocol suite. It is the intermediate layer between the Internet Protocol below it and the application above it. This protocol guarantees reliable and in-order delivery from sender to receiver.

The Network Master supports sending frames that resemble TCP frames, but the traffic transmitted will not constitute a real TCP stream, as no handshake is performed.

Auto connect

By enabling *Automatic TCP connect* it is possible to force the transmitter to establish a TCP connection before the actual traffic frames are sent. This makes it possible to pass a firewall/nat router from the inner side.

Listen mode

When *Listen mode* is enabled, the transmitter will await an external TCP connection before the actual traffic frames are sent. This makes it possible to pass a firewall/nat router from the other side (Remark: you must have something establishing the TCP connection from the inner side e.g. Network Master). In this mode the peers MAC, IP, and Port are taken from the incoming TCP connection.

Src Port

Source port identifies the sending port.

Dst Port

Destination port identifies the receiving port.

Seq number

- If the **SYN** flag is present, this is the initial sequence number and the first data byte is the sequence number plus 1.
- If the **SYN** flag is not present then the first data byte is the sequence number.

The **Auto increment** checkbox may be selected in order for the Sequence number to follow the number of data bytes sent (Remark: the first data byte will be number zero in this mode, and not the number entered into the **Seq number** field).

Ack number

If the **ACK** flag is set then the value of this field is the sequence number that the sender of the acknowledgment expects next.

Data offset

Data offset specifies the size of the TCP header in 32-bit words. This is set automatically.

Reserved

Reserved for future use and should be set to zero.

Flags

Contains 8 bit flags (control bits). The flags may be programmed individually, however when *Automatic TCP connect* is enabled, most of the flags are controlled by the TCP state engine.

Window

Specifies the size of the *sliding window* (i.e. the maximum receiver buffer). The *window* defines the number of bytes that may be sent before waiting for an acknowledgement from the receiver.

Checksum

The 16-bit checksum field is used for error-checking of the header and data.

Urgent pointer

If the **URG** flag is set then this 16-bit field is an offset from the sequence number indicating the last urgent data byte.

Payload

The *Payload* layer allows you to set the pattern of the Payload of the transmitted frames.

		Stre	eam Setup			? ;	X
Layer 4	Frame Content						
ТСР	ETH	PBB	IPv4	TCP	Payload	Variable	
Layer 3	Payload pattern:			User 32 bit			Ł
IPv4				PRBS15		A	
Layer 2				PRBS20			
SNAP				PRBS23			
шсі				PRBS29			9
VLAN				PRBS31			
РВВ				HF TEST			7
MPLS-TP				CRPAT			5
MPLS				JTPAT			
				SPAT			K
ЕТН				User 32 bit		•	
						Close	
						-	

Open the **Pattern** drop-down menu to select the relevant pattern.

- FOX
- 5555
- PRBS9 to PRBS31
- HF TEST
- CRPAT
- JTPAT
- SPAT

• User 32 bit

If you select the **User 32 bit** pattern, a button appears with which you can open the **Pattern Editor** dialog box.

Variable

The *Variable* allows you to set variables in the transmitted frames.

		Strea	am Setup			?	X
Layer 4	Frame Content						
ТСР	ETH	PBB	IPv4	TCP	Payload	Variable	
Layer 3	Variable No.	1		2			2
Layer 2	Field:	Src MAC					
SNAP	Position						
шсі	Offset	16	bit	Length	24 k	oit	
VLAN			xx-xx-	<- <mark>xx</mark> -xx			
РВВ							
MPLS-TP	_ Value						1
MPLS	Change Type:	Increme	ent				2
ЕТН	Start	0	End	255	Step	1	
						Close	2

Variable No.

Select which of the two variables you want to define.

Field

Use the drop-down menu to select the type of field. Note that the contents of the drop-down list depends on which protocol layers are currently chosen for the Ethernet frame.

Position

Allows you to specify a bit position and bit length for the variable by **Offset** and **Length** field. The position of a variable is shown in green. XX means eight bits.

Value

Use the **Change Type** drop-down menu to specify how the variable will change: **Increment**, **Decrement** or **Random**.

Specify **Start** and **End** values for the variable, as well as the number of **Steps**.

6.1.2.2 Swap

Touching the **Swap** button in the navigation area displays the following screen. **Swap** button appears in Reflector application.

Port 1	Port 2 Ap	plication Selector			
Port ←	Swap On		Setting Answer:	is Arp	
MAC Swap all MAC addresse	5			Link Speed: Dupley:	•
Swap specific MAC add	ress	00-00-00-	00-00-00	FDX Ethernet	
Swap IP address				• Traffic • MPLS frame	Ź
UDP/TCP				O MPLS-TP frame	X
Force ACK on TCP frame	25			• VLAN frame Transceiver	
Reflector	<u>SETUP</u>	TEST RESULT	r 📑 📑 🤋	🛚 🖹 V 💽 13 22	

This screen is where you configure the traffic loop by specifying how addresses and/or ports are to be swapped and reflected.

Selecting **Swap all MAC addresses** will transmit/reflect all received frames with their MAC addresses swapped. Use **Swap specific MAC address** to swap and reflect only the frames with a specific MAC address.

The IP addresses and UDP/TCP ports may also be swapped inside the reflected frames. Additionally, the ACK flag may be forced set inside reflected TCP frames.

6.1.2.3 Settings

Touching the **Settings** button in the navigation area will display the screen shown below.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen allows you to specify how the Network Master handles incoming frames on the currently selected Ethernet port. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Incoming Frames

Respond to PAUSE frame

Selecting this checkbox will force the transmitter to pause for a short period of time if a pause frame (defined in IEEE 802.3x) is received, e.g. in case of congestion of the foreign receiver.

Answer incoming Arp requests

When this function is *enabled*, the Network Master will reply to incoming ARP requests, using the Source MAC and IP addresses in sending out replies.

Note that when using the Ping application, this setting is ignored, and replies will always be sent - also from the passive port.

Answer incoming Ping requests

When this function is *enabled*, the Network Master will reply to ping requests, using the Source MAC and IP addresses in the replies.

Note that when using the Ping application, this setting is ignored, and replies will always be sent - also from the passive port.

Receiver Setup

Expected preamble length

Allows you to specify the preamble length that the receiver should consider as 'normal' that is, non-erroneous). The default setting is **8** bytes. The range is from **3** to **15** bytes.

Ignore preamble violations

Select this checkbox if you want to ignore preamble violations.

IFG lower threshold

Allows you to specify the minimum allowed receiver interframe gap. The default setting is **12** bytes. The range is from **8** to **15** bytes.

Filter IFG violations caused by master/slave clock synchronization

Applies only to Gigabit mode, where the IFG will not be constant, which leads to a larger number of IFG violated frames than expected. Select this function to hide those violations.

Jumbo frame size upper limit

Allows you to specify the size of the Jumbo frames (that is, Ethernet frames longer than 1518 that are not counted as oversized/erroneous). The default setting is **9018** bytes. The range is from **1519** to **16000** bytes.

It is possible to let the currently selected port copy the setup from another port by selecting the 'Follows' checkbox and choosing the relevant port in the dropdown menu. Please note, however, that if the port is already itself being followed by another port, it cannot follow that port for the same parameters.

Miscellaneous

Allow changes to interface setup while a test is running

Select this checkbox if you want to be able to make changes to the interface setup during a measurement.

Compatible pattern with CMA3000

Select this checkbox if you want the PRBS pattern for CMA3000 compatibility. (CMA3000 is the previous model of Network Master Pro.)

6.1.2.4 SyncE

Touching the **SyncE** button in the navigation area will display the screen shown below.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen allows you to configure the setup parameters related to Synchronous Ethernet. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Enable SyncE

Select this checkbox to enable statistics of the quality level reported in the received ESMC (Ethernet Synchronization Messaging Channel) messages and the generation of Sync Alarm when such messages are missing.

Due to the properties of 10 Mbps Ethernet, the transfer of SyncE timing cannot be guaranteed at this rate.

Setup

NOT

Mode

- Non-sync/Monitor: Does not transmit an ESMC message.
- **Synchronous**: Forces the quality levels specified in *QL* to be transmitted in an ESMC message every second.

QI Type

Allows you to select a protocol/option. This changes the textual representation of the quality levels on the result- and status pages.

QI

Allows you to specify the quality level to be indicated in the transmitted Ethernet signal.

G.781 option I	G.781 option II	G.781 option III	G.8264
QL-INV0	QL-STU	QL-UNK	QL-INV0
QL-INV1	QL-PRS	QL-INV1	QL-INV1
QL-PRC	QL-INV2	QL-INV2	QL-INV2
QL-INV3	QL-INV3	QL-INV3	QL-INV3
QL-SSU-A	QL-TNC	QL-INV4	QL-INV4
QL-INV5	QL-INV5	QL-INV5	QL-INV5
QL-INV6	QL-INV6	QL-INV6	QL-INV6
QL-INV7	QL-ST2	QL-INV7	QL-INV7
QL-SSU-B	QL-INV8	QL-INV8	QL-INV8
QL-INV9	QL-INV9	QL-INV9	QL-INV9
QL-INV10	QL-ST3	QL-INV10	QL-EEC2
QL-SEC	QL-INV11	QL-SEC	QL-EEC1
QL-INV12	QL-SMC	QL-INV12	QL-INV12
QL-INV13	QL-ST3E	QL-INV13	QL-INV13
QL-INV14	QL-PROV	QL-INV14	QL-INV14
QL-DNU	QL-DUS	QL-INV15	QL-INV15

Combination of QI Type and QI

Src MAC

Allows you to specify the MAC address to be used in ESMC messages. You can either use the **Default** checkbox to force an instrument-specific default value, or touch the address field to enter an address yourself.

Capture

Selecting this checkbox enables recording of ESMC messages.

6.1.2.5 IEEE 1588v2

Touching the **IEEE 1588v2** button in the navigation area will display the screen shown below.

Follow button appears when the Port 1 settings can be copy to Port 2.

Port 1	Port	2	Application Sel	ector			
Port ← St	ream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.3ah	Filter Off	
Enable IEEE 1588v2	Timing			Fo	llow	 Link Speed: 1 Gbps Duplex: FDX 	\$
Slave mode	Unicas	st(G8265.1) DP	•	Capture		Ethernet Traffic	?
IEEE 1588v2 domain:	Default uni	icast				• MPLS-TP frame	Ĕ.
Step mode:	One-step					O VLAN frame	Í
Delay mech.:	Delay requ	uest/response				IEEE 1588v2	x
						OAM	
BERT		SETUP	TEST		+ B 3	Transceiver	

This screen allows you to configure the IEEE 1588 clock (based on the IEEE 1588 Precision Time Protocol (PTP), which is used to distribute absolute time across the Ethernet network). An IEEE 1588 clock can act either as a timing master or as a slave. The screen also contains information about the current status of the selected port.

The clock may be set up in either normal or unicast mode. In unicast mode the clock must be explicitly told whether it is a master or a slave, and the clock must never change away from this setup automatically.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

The setup area of this screen contains the following groupings of parameters, placed on separate tab pages:

- <u>General setup parameters</u>
- <u>Master clock specific parameters</u>
- <u>Timing-specific parameters</u>

Enable IEEE 1588v2

Select this checkbox to start the clock. The settings of the **Slave mode** and **Unicast** checkboxes below will determine whether the clock runs as a slave or will become the grandmaster clock.

When the Network Master becomes a grandmaster, and if the internal clock is selected (or if the GPS is not available), the IEEE 1588 clock is set from the Network Master's internal time (offset by the selected UTC offset). This action only takes place when the clock is restarted (e.g. disable/enable the clock will force this).

When the Network Master is grandmaster in unicast mode, only one slave will be accepted at a time. Other slaves are just ignored.

Setup tab page

The **Setup** tab page contains the general setup parameters for IEEE 1588v2.

Port 1	Port 2	Application Sele	ctor			
Port → Si	tream Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.3ah	Filter Off	
Enable IEEE 1588v2	Timing		F	bllow	Link Speed: Duplex: FDX	\$
Slave mode	Unicast(G8265.1)	•	Capture		• Traffic • MPLS frame	?
IEEE 1588v2 domain: Step mode:	One-step		▼ ▼		• MPLS-TP frame • VLAN frame SyncE	ľ
Deray mech.:	Delay request/response		•		IEEE 1588v2 OAM Transceiver	X
III BERT	SETUR	<u>p</u> test i	RESULT	🕂 💽 🐐	🕴 V 🗾 13 01	

Slave mode

Used to specify that the port can only act as a slave clock. Used in both multicast (normal) and unicast mode.

Unicast(G.8265.1)

Used to enable the unicast profile. For domains 0 to 3 static unicast is enabled. For domains 4 to 23 the Telecom Profile (ITU-T G.8265.1 IEEE 1588 v2 profile for telecommunication) is used.

If Slave mode is checked, the clock will always run as a slave in both normal and unicast mode. If Slave mode is not checked in normal mode, the best master clock algorithm is run and the result of this will determine if the Network Master can become a grandmaster clock. In unicast mode, if the Slave mode is not checked, the Network Master will become a grandmaster clock.

Capture

Used to capture the packets concerning IEEE 1588 v2 protocol. The captured packet data are saved to file with extension "pcap".

Ext. Log

Used to record the external log. If you select this, the **IEEE1588v2 Log** button appears in the navigation area of Test Result.

IEEE 1588v2 domain

Allows you to select between some predefined domains. Depending on other settings different Multicast / unicast MAC and IP destination address will be used. For multicast domains from 0 to 3 may be used, and for unicast domains 4 to 23 may be used.

In multicast mode please review the attributes in the timing section when changing the domain. Otherwise the best master algorithm may fail for all IEEE 1588v2 clocks in the domain.

Step mode

Allows you to choose between the two step modes: **One-step** and **Two-step**.

- **One-step**: The transmitted timestamp of a frame is inserted into the frame itself.
- **Two-step**: The timestamp is sent in a follow-up message.

Delay mech.

Allows you to choose which mechanism to use for calculating the mean path delay: **Delay request/response** or **Peer delay**.

Transport protocol You can set up the transport protocol(s) for PTP messages either by selecting one of the predefined configurations from the *quick selection menu* (e.g. **ETH/VLAN/IPv4/UDP**) or by configuring the protocols via the *detailed mode* dialog box. Touching the protocol button will launch the *detailed mode* dialog box (the <u>IEEE 1588v2 Protocol</u> dialog box). Touching the arrow to the right of the button will open the *quick selection menu*.

Master Clock tab page

The **Master Clock** tab page contains the parameters related to the clockspecific setup. Note that it is not enabled if the port is set in Slave Mode.

Port 1	Port 2 Appl	ication Selector			C.
Port → Stream	Settings Answer: Arp	SyncE IEEE 1588v2 Off Unicast	OAM 802.3ah	Filter Off	
Enable IEEE 1588v2 Setup Master Clock Timi	ng		Follow	 Link Speed: 1 Gbps Duplex: FDX 	\$
Source: Internal		Use src MAC		Ethernet • Traffic	?
Priority #1: 255	Time source:	Internal oscillator	 A0h 	• MPLS frame	
Class: 255	Accuracy:	Unknown	FEh	O VLAN frame SyncE IEEE 1588v2	
				OAM Transceiver	
BERT	<u>SETUP</u>	TEST RESULT	💾 📑 🕅	V 🗾 13 02	

Source

Allows you to specify where the time of the clock should come from.

- Internal (Current instrument time)
- GPS (Requires external GPS Sensor)

Priority #1/#2

Allows you to specify the priority 1 and priority 2 values. Acceptable values are between ${\bf 0}$ and ${\bf 255}.$

Class

Allows you to specify the clock class. Acceptable values are between **0** and **255**.

Identity

Allows you to specify the 64 bit clock identity. You can either use the Source MAC to generate the identity (by selecting the **Use src MAC** checkbox) or you can type the identity yourself (using the address field).

Time source

Either choose one of the predefined time sources in the drop-down menu, or select **User defined** and enter a value manually. Acceptable values are between **0x00** and **0xFF**.

Accuracy

Either choose one of the predefined accuracies in the drop-down menu, or select **User defined** and enter a value manually. Acceptable values are between **0x00** and **0xFF**.

Timing tab page

The **Timing** tab page contains the timing-specific parameters.

Port 1 Port	2 Application Sele	ctor	
Port ← Stream	Settings Answer: Arp Off	IEEE 1588v2 Unicast 802.3ah	Filter Off
Enable IEEE 1588v2		Follow	Link Speed: Duplex: FDX
Announce interval: 2 s Announce timeout: 3	SyncE interval:	1 s 🔍	Ethernet Traffic O MPLS frame
UTC offset: 35 s	c Unicast duration: (300 sec	MPLS-TP frame VLAN frame
			IEEE 1588v2
BERT	<u>SETUP</u> τεsτ	RESULT 📑 🍽 🔿	Transceiver

In multicast mode it is important that all IEEE 1588v2 clocks in the same domain uses the same announce interval and announce timeout values. Otherwise the best master algorithm may fail. Synch interval and minimum delay request interval should also match the domain.

Announce interval

Allows you to specify the interval between transmitted announce messages. Available values are between **1/8 s** and **32 s**.

Announce timeout

Allows you to specify the number of missed announce intervals before announce timeout. Acceptable values are between **2** and **255**.

Sync interval

Allows you to specify the interval between transmitted sync messages. Available values are between **1/128 s** and **32 s**.

Min delay Req. interval

Allows you to specify the minimum interval between transmitted delay request messages. Available values are between **1/16 s** and **32 s**.

Unicast duration

In unicast slave mode you ask a master to emit announce, sync and delay response messages for some time. This setting is enabled when IEEE 1588v2 domain is set to **Default unicast** or **5** to **23**. After this period the master forgets everything about your request. The Unicast Duration is this period in seconds. Legal values are from **60** to **1000** seconds. A Network Master unicast slave will renew the request 10 seconds before timeout.

UTC offset

Defines the offset between the internal clock or UTC and TAI. This value is used when converting the internal time or a GPS based UTC time to TAI based time, which is used in an IEEE 1588 clock. The correct UTC/TAI offset value changes when leap seconds are applied to the UTC time. When the internal clock is used as reference, this offset should also include a correction of the time zone and daylight saving time.

It is possible to let the Port 2 copy the setup from Port 1 by touching the 'Follows' button. This button appears when you can copy the Port 1 settings to Port 2.

Transport Protocol The **IEEE 1588v2 Protocol** dialog box is launched by touching the protocol button on the *Setup* tab page. The dialog box allows you to configure the protocols in *detailed mode*.
		IEEE 1588	3v2 Protocol		(? ×
Layer 4	Frame Content				
UDP		ETH		IPv4	
IPv4	Dst MAC:		00-00-00-00-00	ARP	2
Layer 2	Src MAC:		00-00-91-E1-02-11	🗸 Default	
ETH/MPLS	Ethertype	0x0800 (IPv4)			
ETH/VLAN					
ЕТН					J.
					7
					٢.
	C.				
					Close

In the **IEEE 1588v2 Protocol** dialog box the buttons on the left-hand side allow you to select the relevant layers. The current selection is shown at the top of the **Frame Content** area. Touching one of the layer buttons in the **Frame Content** area will display the setup parameters for that layer.

The following layers and parameters are available:

ETH layer

When None is set to the Layer 3, you can set Src MAC only.

- Dst MAC Type in the destination MAC address to be used with all PTP unicast frames. Use the ARP button to solve any MAC setup in connection with IPv4.
- Src MAC Type in the source MAC address to be used with all PTP frames. Select **Default** to use the default MAC that comes with the Ethernet port.
- Ethertype Ethernet type is user-selectable only in case of VLAN use.

VLAN layer

Select the number of levels using **Level count** drop down menu.

For each level select ID, CFI, Priority, and Ethertype.

MPLS layer

Select the number of levels using **Level count** drop down menu.

For each level select Label, EXP, and TTL. Stack displays the stack bit.

IPv4 layer

- Src IP Type in the IPv4 source address.
- **Dst IP** In unicast mode type in the IPv4 destination address.
- DSCP(PTP events message) and DSCP(PTP other message) Set the DSCP value to be used for transmitted PTP event frames and a value for all other PTP frames. Acceptable values are between 0x00 and 0x3F.

IPv6 layer

- Src IP Type in the IPv6 source address.
- Dst IP In unicast mode type in the IPv6 destination address.
- **Multicast scope** Select one of the predefined IPv6 multicast scope values or choose **User defined** to manually enter a value. Acceptable values are between 0x0 and 0xF.

6.1.2.6 OAM

Touching the **OAM** button in the navigation area will display the screen shown below.

Follow button appears when the Port 1 settings can be copy to Port 2.

OAM (Operation, Administration and Management) is a group of management functions that provides system or network fault indication, performance monitoring, security management, diagnostic functions, configuration and user provisioning.

This screen allows you to configure the OAM application (i.e. the OAM functions). It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

The setup parameters are grouped according to protocol. Use the **Protocol** drop-down menu to select the relevant protocol.

To change to a different protocol, the state of the current protocol must be set to 'Off'.

- <u>802.3ah protocol</u> Applies to the connectivity of point-to-point connections across one hop.
- <u>802.1ag protocol</u> Applies to the connectivity of bridges and paths that pass through bridges. Handles both multipoint connections and point-to-point connections.
- <u>Y.1731 protocol</u> An extension to the 802.1ag standard and relies upon the 802.1ag protocol for transport. Applies to both multipoint and pointto-point connections.

In addition, the 802.1ag and Y.1731 protocol screens contain a special <u>Discovery setup</u>.

OAM Protocol

In the **OAM Protocol** dialog box the buttons on the left-hand side allow you to select the relevant layers. The current selection is shown at the top of the **Frame Content** area. Touching one of the layer buttons in the **Frame Content** area will display the setup parameters for that layer.

The following layers and parameters are available:

OAM layer

 $\mbox{Src}\ \mbox{MAC}$ -The MAC address of the source that sends the OAM Protocol Data Units, which is a unicast address.

PBB layer

Refer to PBB in "Stream" subsection.

VLAN layer

Refer to <u>VLAN</u> in "Stream" subsection.

MPLS, MPLS-TP layer

Refer to MPLS in "Stream" subsection.

802.3ah protocol Selecting the **802.3ah** protocol will display the screen shown below.

setup

Discovery tab page

The **Discovery** tab page contains the following parameters:

State

Allows you to set the state of the protocol to either **On** or **Off**. Note that when **State** is set to **On**, the *Link mode*, *Vendor OUI* and *Vendor specific info* parameters are disabled.

Link mode

Allows you to set the DTEs to **Active** or **Passive** mode. *Active* DTEs initiate the exchange of information, while *passive* DTEs react to the initiation by the remote DTE. Note that active DTEs operate in a limited respect if the remote OAM entity is in passive mode.

Vendor OUI

Allows you to specify the 24-bit Organizationally Unique Identifier of the vendor. Touch the field to launch an editor dialog box.

Vendor specific info

Allows you to specify a 28-bit identifier that may be used to differentiate a vendor's product models/versions. Touch the field to launch an editor dialog box.

Unidirectional

Select this checkbox to make the device operate in unidirectional transmission mode.

Link event

This setting is reserved for future use and cannot be set.

Remote loopback

This setting is reserved for future use and cannot be set.

Variable retrieval

Select this checkbox to make the DTE support sending Variable Response OAMPDUs.

Defects tab page

The **Defects** tab page allows you to enable/disable local defects.

Link fault

Select this checkbox to enable a message if the PHY determines that a fault has occurred on the receive direction of the local DTE.

Dying gasp

Select this checkbox to enable a message if an unrecoverable local failure condition has occurred.

Critical event

Select this checkbox to enable a message if an unspecified critical event has occurred.

802.1ag protocol Selecting the **802.1ag** protocol will display the screen shown below.

setup

Port 1	Port 2		Application Sele	ector			С
Port	Stream Se Ans	ettings wer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.1ag	Filter Off	
802.1ag		MEP ID:	1			 Link Speed: L Ghns 	₽
State: Off	Domain:		Domain	MD Level:	0 💌	Duplex: FDX	0
CCM LBM LTM	Association:		Anritsu			Ethernet	
						Traffic MPLS frame	0
CCM interval:	1s 🛛					• MPLS-TP frame	E,
						O VLAN frame	r i 1
						SyncE	
						IEEE 1588v2	X
						OAM	
	Setup		Discovery			Transceiver	-
BERT		<u>SETUP</u>	TEST	RESULT	🕂 🕑 🙀	V 🗾 13 09	

The screen contains two views: the default Setup view and the Discovery view. Use the **Setup** and **Discovery** buttons at the bottom of the screen to switch between the two views.

The Setup view is described below. The Discovery view is described in a separate section.

General parameters

State

Allows you to set the state of the protocol to either **On** or **Off**. Note that when **State** is set to **On**, the other general parameters are disabled, but the tab pages and their contents are enabled.

MEP ID

Allows you to specify the Local Maintenance Point ID, which will identify the unit in the MA.

Domain

Allows you to identify the network or part of the network for which faults in connectivity are managed.

MD Level

Use the drop-down menu to specify the level at which the MEP exists.

Association

Allows you to specify the Main Association Identifier.

CCM tab page

The **CCM** tab page contains the following parameter:

CCM interval

Use the drop-down menu to specify the frequency at which CCMs are transmitted and expected to be received.

LBM tab page

The **LBM** tab page contains the following parameters:

Optional TLV

Use the drop-down menu to select a TLV type, if relevant. The possible types are: **Data TLV** and **Test TLV**. If you select one of the TLV types, fields for specifying the length and value will appear.

Length

Only available if a Data or Test TLV type has been selected. Allows you to specify the length of the TLV.

Value

Only available if a Data or Test TLV type has been selected. Allows you to specify the value of the TLV. Note that for the Data TLV type, this field is an entry field where you open an editor and type the value; for the Test TLV type, it is a drop-down menu.

LTM tab page

The **LTM** tab page contains the following parameters:

TTL

Allows you to specify a TTL value. Used to indicate whether or not an LTM should be terminated by the receiver.

Trans ID

Allows you to specify the transaction number for the LTM.

Y.1731 protocol

Selecting the **Y.1731** protocol will display the screen shown below.

setup

The screen contains two views: the default Setup view and the Discovery view. Use the **Setup** and **Discovery** buttons at the bottom of the screen to switch between the two views.

The Setup view is described below. The Discovery view is described in a separate section.

General parameters

State

Allows you to set the state of the protocol to either **On** or **Off**. Note that when **State** is set to **On**, the other general parameters are disabled, but the tab pages and their contents are enabled.

MEP ID

Allows you to specify the Local Maintenance Point ID, which will identify the unit in the MEG.

MEG ID

Allows you to identify the MEG to which the MEP belongs.

MEG level

Use the drop-down menu to specify the MEG level at which the MEP exists.

CCM tab page

The **CCM** tab page contains the following parameter:

CCM interval

Use the drop-down menu to specify the frequency at which CCMs are transmitted and expected to be received.

LBM tab page

The **LBM** tab page contains the following parameters:

Optional TLV

Use the drop-down menu to select a TLV type, if relevant. The possible types are: **Data TLV** and **Test TLV**. If you select one of the TLV types, fields for specifying the ID will appear.

Length

Only available if a Data or Test TLV type has been selected. Allows you to specify the length of the TLV.

Value

Only available if a Data or Test TLV type has been selected. Allows you to specify the value of the TLV. Note that for the Data TLV type, this field is an entry field where you open an editor and type the value; for the Test TLV type, it is a drop-down menu.

LTM tab page

The **LTM** tab page contains the following parameters:

TTL

Allows you to specify a TTL value. Used to indicate whether or not an LTM should be terminated by the receiver.

Trans ID

Allows you to specify the transaction number for the LTM.

TST tab page

The **TST** tab page contains the following parameters:

Frames to send

Allows you to specify the number of frames to be transmitted.

Rate

Use the drop-down menu to select the rate at which frames are transmitted.

Optional TLV

Use the drop-down menu to select the **Test TLV** type, if relevant. Fields for specifying the length and value will then appear.

Length

Only available if the Test TLV type has been selected. Allows you to specify the length of the TLV.

Value

Only available if the Test TLV type has been selected. Use the drop-down menu to select the value of the TLV.

MCC tab page

The **MCC** tab page contains the following parameters:

OUI

Allows you to specify the Organizationally Unique Identifier for the organization defining a specific format and meaning of ETH-MCC.

Data

Allows you to specify any required additional information. The type of information depends on the specific application of ETH-MCC.

LCK tab page

The **LCK** tab page contains the following parameters:

Client MEG level

Allows you to specify the MEG level of the client MEG.

LCK rate

Use the drop-down list to select the rate of the LCK frames being transmitted.

AIS tab page

The **AIS** tab page contains the following parameters:

Client MEG level

Allows you to specify the MEG level of the client MEG.

AIS rate

Use the drop-down menu to select the rate of the AIS frames being transmitted.

DM1 tab page

The **DM1** tab page contains the following parameters:

Туре

Use the drop-down menu to select the relevant operation type (**On-demand operation** or **Proactive operation**). The same DM1 frame format can be used for both.

Rate

Use the drop-down menu to select the rate at which DM1 frames are transmitted.

Frames to send

Allows you to specify the number of frames to transmit.

Optional TLV

Use the drop-down menu to select a TLV type, if relevant. The possible types are: **Data TLV** and **Test TLV**. If you select one of the TLV types, fields for specifying the ID will appear.

Length

Only available if a Data TLV type has been selected. Allows you to specify the length of the TLV.

Value

Only available if a Data TLV type has been selected. Allows you to specify the value of the TLV. Note that for the Data TLV type, this field is an entry field where you open an editor and type the value.

ID

Only available if a Test TLV type has been selected. Allows you to specify the value of the ID.

DMM tab page

The **DMM** tab page contains the following parameters:

Туре

Use the drop-down menu to select the relevant operation type (**On-demand operation** or **Proactive operation**).

Rate

Use the drop-down menu to select the rate at which DMM frames are transmitted.

Frames to send

Allows you to specify the number of frames to transmit.

Delay threshold

Allows you to specify a delay threshold that is used when a DMM test is active. If the delay meets or exceeds that threshold, the user is alerted.

Optional TLV

Use the drop-down menu to select a TLV type, if relevant. The possible types are: **Data TLV** and **Test TLV**. If you select one of the TLV types, fields for specifying the ID will appear.

Length

Only available if a Data TLV type has been selected. Allows you to specify the length of the TLV.

Value

Only available if a Data TLV type has been selected. Allows you to specify the value of the TLV. Note that for the Data TLV type, this field is an entry field where you open an editor and type the value.

ID

Only available if a Test TLV type has been selected. Allows you to specify the value of the ID.

LMM tab page

The **LMM** tab page contains the following parameters:

Rate

Use the drop-down menu to select the rate at which LMM frames are transmitted.

Frames to send

Allows you to specify the number of frames to transmit.

Loss threshold

Allows you to specify a loss threshold that is used when an LMM test is active. If the loss ratio meets or exceeds that threshold, the user is alerted.

SLM tab page

The **SLM** tab page contains the following parameters:

Rate

Use the drop-down menu to select the rate at which SLM frames are transmitted.

Frames to send

Allows you to specify the number of frames to transmit.

Loss threshold

Allows you to specify a loss threshold that is used when an SLM test is active. If the loss ratio meets or exceeds that threshold, the user is alerted.

EXM tab page

The **EXM** tab page contains the following parameter:

Data

Allows you to specify a string which you can send in a message to other remote maintenance points.

VSM tab page

The **VSM** tab page contains the following parameter:

Data

Allows you to specify a string which you can send in a message to other remote maintenance points.

Discovery view (802.1ag/Y.1731 protocols)

Touching the **Discovery** button available for the 802.1ag or Y.1731 protocol will display the screen shown below.

Port 1	Port 2	Application Sele	ector			
Port →	Stream Setti Answe	ngs SyncE r: Arp Off	IEEE 1588v2 Off	OAM Y.1731	Filter Off	
Domain	Association	Level MEP ID	MAC		Link Speed: Duplex: FDX	₽
					Ethernet Traffic MPLS frame 	?
Discover	🖲 ссм	Discovery ir	nterval:	5s 🔻	• MPLS-TP frame • VLAN frame SyncE	Í
Add Remove	LBM	Max discovered de	evices:	10	IEEE 1588v2 OAM	×
BERT	Seup	SETUP TEST	RESULT	¥ 🔿 🛪	* V 5 13 18	

The contents of the Discovery view screen is the same for both protocols. The screen contains the following parameters:

CCM/LBM

Select the radio button for the relevant method of discovery.

- **CCM** Passive method. Discover Remote Maintenance points by looking at incoming CCM frames. This is the preferred method of discovery and the default selection.
- LBM Active method. Discover other devices by sending out a multicast loopback message and discover the devices' MAC addresses.

Discovery interval

Use the drop-down menu to specify the time period during which to wait and discover messages.

Max discovered devices

Allows you to specify the maximum number of devices that will be discovered.

Discovering
devicesTo discover devices, touch the Discover button on the left side of the
screen. This will display the Discovery dialog box.

Devices will appear in the dialog's list as they are discovered. Select the device in the list and touch the **Add** button in the dialog box. The device is added to the list displayed on the Discovery view screen.

Adding devices manually To add devices manually, touch the Add button on the left side of the Discovery view screen. This will launch the Add Rmp dialog box where you can enter identification data for a specific remote device.

Port 1	Port 2	oplication Selector		
Port ← Stre	Sattings	Add Rmp	Filter Off	\triangleright
Domain	Domain:	No Domain	Link Speed: 1 Gbps	₽
	MEG ID:		Duplex: FDX	
	Level:	0	• Traffic	?
	MEP ID:		O MPLS frame	
	MAC:		O MPLS-TP frame	- /
Discover			SyncE	e
Add Remove		Cancel	IEEE 1588v2	X
	Cotup	Discovery	OAM	
	Semp	Discovery	Iransceiver	
BERT	<u>SETUP</u>	TEST RESULT 📑 🗃 🔿	V 13:18	

The Add Rmp dialog contains the following parameters:

Domain

Allows you to specify the MD to which the MEP belongs. You can set the domain when 802.1ag is selected.

MEG ID

Allows you to specify the MEG to which the MEP belongs.

Level

Use the drop-down menu to select the MD level at which the MEP exists.

MEP ID

Allows you to specify the Maintenance Point ID that the unit will be known as in the MA. Note that this is the only required parameter.

MAC

Allows you to specify the MAC address of the remote unit.

Accept

Touch the **Accept** button when you have entered the desired data in the dialog box. The identified unit is then added to the list displayed on the Discovery view screen. Note that the **Accept** button is enabled only when you have entered a value in the **MEP ID** field.

Removing
devicesTo remove a device from the list displayed on the Discovery view screen,
select the device and then touch the **Remove** button on the left side of the
screen.

6.1.2.7 Filter

Touching the **Filter** button in the navigation area will display the screen shown below.

Follow button appears when the Port 1 settings can be copy to Port 2.

Port 1	Por	t 2	Application Selec	tor			
Port -	Stream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM Y.1731	Filter On	
Columns are "A	Select ND'ed", rows are '	t Filter Patt "OR'ed". Mask b	ern Offset 2 hits: "0"=Dont't car	e, "1"=Match ex	ollow	 Link Speed: 1 Gbps 	₽
addres	s Src IPv4	address	Dst IPv4 address	Pattern ABCDEF0		Ethernet	
2 20-00-	00 0.0	0.0.0	0.0.0.0	FOFOFOF	0	• Traffic	?
4 00-00-	00 0.0 00 0.0	0.0.0	0.0.0.0	0000000	00	• MPLS frame • MPLS-TP frame	E
5 00-00-	00 192.1	68.10.5 8 10 1 20	192.168.10.8	0000000		O VLAN frame	Í
_Allow the follow	ing encapsulation	types (no sele	ction means allow	everything):		IEEE 1588v2	X
Ether type	<u> </u>	SNAP		шс		Transceiver	
III 🔤 BERT		SETU	Ρ TEST I		# 🗈 🛪	X √ 51 13 20	

This screen allows you to set up filters and masks for the reception of Ethernet frames. It can also be used to inspect the current status of the selected port.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Enable filters Select this checkbox to be able to set up new filters or make changes to the existing ones.

At the bottom of the screen it is possible to only allow certain encapsulation types. If none are selected, all encapsulation types will pass.

It is possible to let the currently selected port copy the setup from another port by selecting the 'Follows' checkbox and choosing the relevant port in the dropdown menu. Please note, however, that if the port is already itself being followed by another port, it cannot follow that port for the same parameters.

Filter and mask setup The filter and mask table shows the currently existing filters. There are 8 rows, each representing a filter which (when enabled) is applied to each received frame. Each filter is composed as a set of values and/or masks (e.g. MAC destination address, IP addresses etc.). If all values in at least one enabled row/filter matches, the frame will pass. If the mask for a specific value is enabled, only bits that are "1"/on are compared to the frame. For instance, if MAC Destination value is '00-12-34-56-78-9A' and the mask is set to '00-FF-00-FF-FF', only frames with MAC addresses 'XX-12-XX-56-78-9A' will pass.

To specify the set of values and/or masks available for each filter (i.e. the columns of the table), touch the **Select Filter** button. This will launch the filter editor dialog box, which contains a number of checkboxes for enabling filters and masks on different addresses.

To set up / edit a filter, touch the relevant table cell. This will launch the filter/mask NumPad dialog box.

The filter editor dialog box contains a number of checkboxes for enabling filters and masks on different addresses. Selectable checkboxes depends on frame structure. The selected filters appear in row of the table.

MPLS Filter, VLAN Filter setting

MPLS Filter and VLAN Filter can be selected upto eight levels because these layer may have up to eight level. The parameters in each filters can be set independently.

For setting parameters, refer to <u>MPLS</u> or <u>VLAN</u> in "Stream" subsection.

Pattern filter setting

With the pattern value it is possible to match a user-defined 32 bit value to a specific offset defined by **Pattern Offset**. The pattern offset applies to all 8 filters but will only affect the enabled ones.

- 1. Select checkbox of **Pattern** on Select Filter dialog box.
- 2. Touch Pattern Offset button.
- 3. Specify the Pattern Offset. This is the number of bytes counted from top of destination MAC address byte. If you specified "7", the four bytes of source MAC address are set to the object of filtering.
- 4. Touch the cell of **Pattern** in the table on the setup area.
- 5. Specify the pattern of four bytes.
- 6. Select the checkbox at left-side of the table.

Port 1	Port 2	Ар	plication Select Pattern	or				
Port						FOFOFOFO	Filter On	
Enable filters	Min: 0000000]			Max:	FFFFFFF	ink ed:	*
Columns are "AND'ed		D	E	F			1 Gbps lex: FDX	
1 00-00-00	CLR	А	в	с		◙	ernet	
2 00-00-00	₩	7	8	9	i i	->	Traffic MPLS frame	?
4 00-00-00		4	5	6	i i	+	MPLS TP frame	
5 00-00-00	Paste	1	2	3	ĨÌ	Copy All	VLAN frame	
			0				SyncE IEEE 1588v2	X
Allow the following e				_	- 2		OAM	
Ether type			Cance			Ok	Transceiver	
BERT		<u>SETUP</u>	TEST R	ESULT	H	📑 🖏 🕅	V 💽 13:21	

The filter Numpad dialog box allows you to edit a specific filter/mask pattern.

6.1.3 Status Information

This section describes the status information available in the status area of the Ethernet ports setup screen.

6.1.3.1 Status Summary

The status summary displayed for the Ethernet interface consists of the following information:

The actual summary information displayed depends on the type of the Ethernet interface.

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- **Interface Status** The middle part of the status area gives you access to alarm and error information for the selected interface. The status is indicated by the lamp color. You can choose whether to view only the current alarm and error status, or to view all alarms and errors in the alarm trap since it was last reset.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.

- **Monitor Buttons** At the bottom of the status area are below buttons that give you access to various monitor information. By touching a button, you can launch the corresponding information display.
 - SyncE
 - IEEE 1588v2
 - OAM
 - Transceiver

6.1.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Sele	ctor			
Port → Stream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.3ah	Filter On	
Timing Bit rate 1 00 Bit rate difference	0 000 000 bps 0 bps 0 ppm	Link partner ab Pause capable Asym. pause ree Remote fault	ilities	0 0 0	• Link Speed: Duplex: FDX Ethernet	8 •
Accumulated difference	-8 bits	Speed/Duplex:	10		 Traffic MPLS frame 	?
Auto negotiation complete	•		100		O MPLS-TP frame	E.
Speed:	1 Gbps				O VLAN frame	Í
	MDI				SyncE	
Local clock:	Master				IEEE 1588v2	X
Local clock.	master				OAM	
					Transceiver	
BERT	SETU	IP TEST	RESULT	H 📑 🛪	₿ V 🗾 15 06	

This screen presents detailed information about the current physical status of the received signal at the Ethernet interface.

The physical status information consists of the following parameters:

- Bit rate, which shows the current bit rate.
- <u>Bit rate difference</u>, which shows the difference in bit rate between received signal and reference source signal.
- <u>Accumulated difference</u>, which shows the accumulated bit rate difference between the received signal and the reference source signal.
- Link, which shows the link status of Ethernet.
- Link partner abilities, which shows the abilities of the opposite interface port. (Only available for Electrical)

Timing

The currently received bit rate is shown in bits per second (bps).

Bit rate difference

Bit rate

The current difference between the received signal and the reference source signal is shown in both parts per million (ppm) and bits per second (bps).

Accumulated difference

The accumulated difference between the received signal and the reference source signal is shown. The information is presented as number of bits of difference detected over the accumulation period.

This is important information for identifying small frequency differences, which may not be visible by showing the current bit rate difference.

The accumulated difference information is accumulated continuously. The accumulation is reset when measurement is started or restarted.

Link

When *Electrical* interface type is selected, the link status is shown.

Link

Ethernet link has established or not is shown.

Auto negotiation complete

Auto negotiation has completed or not is shown.

Speed

10 Mbps, 100 Mbps, 1 Gbps or 10 Gbps is shown.

Duplex

FDX: Full Duplex, HDX: Half Duplex.

MDI/MDIX

MDI: Medium Dependent Interface, MDIX: Medium Dependent Interface Crossover

Local clock

Master or Slave is shown.

Link partner When *Electrical* interface type is selected, the Link partner abilities is shown. **abilities**

Pause capable

Indicates in green when the device is capable of flow control using Pause request.

Asym. pause request

Indicates in green when the device is capable of asymmetric flow control using Pause request.

Remote fault

Indicates in green when the device is sending the remote fault signal.

Speed/Duplex

Available speed and duplex are indicated in green.

6.1.3.3 Interface

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen presents key interface status indicators, with Lamp icons showing the current status. These indicators give a quick overview of the condition of the lines.

LAN Status

- Frame Present: Ethernet frames are detected.
- MPLS frame: Label of MPLS (Multi-Protocol Label Switching) is detected.
- **MPLS-TP frame**: Label of MPLS-TP (Multi-Protocol Label Switching Transport Profile) is detected.
- VLAN frame: Virtual LAN tag is detected.
- Multi stream frame loss: Multi stream frame loss is detected.
- BER alarms: BER Alarms are detected.
- **Bit errors**: Bit errors are detected.

Multi stream frame loss appears in case of Mon./Gen. application.

PCS Alarms This status appears when the SFP+ is set to Interface Type.

- Local fault: Local fault is detected.
- **Remote fault**: Remote fault is detected.

6.1.3.4 SyncE

Touching the **SyncE** button in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Selector			С
Port → Si	tream Settings Answer: Arp	SyncE IEEE 1588 Sync Off	8v2 OAM 802.3ah	Filter Off	
SSM/QL Last received: SSF		QL-INV0		Link ipeed: 1 Gbps)uplex: FDX	*
			E	ithernet • Traffic	?
				• MPLS frame • MPLS-TP frame	B
				O VLAN frame SyncE	É
				IEEE 1588v2	X
				OAM Transceiver	
BERT	<u>SETUP</u>	TEST RESULT	💾 📑 🖘 🕅	V 🗾 15:08	

This screen presents information related to the status of synchronous Ethernet.

SSM/QL Synchronization Status Message and Quality Level status

Last received

Shows the latest QL value.

SSF

Server signal fail. The Lamp icon becomes red when no ESMC message has been received within the last five seconds.

6.1.3.5 IEEE 1588v2

Touching the **IEEE 1588v2** button in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2	Application Sele	ctor		
Port ←	Stream Settings Answer: Arp	SyncE Off	IEEE 1588v2 Unicast 802.3ał	Filter Off	
_Local Clock		_Wall Clock		 Link Speed: 	32
State:	LISTENING	UTC	GPS unavailable	1 Gbps	Ľ
Offset	N/A			Duplex: FDX	
Mean path delay	N/A	Current	2014-06-07T15:11:24	Ethernet	_
Sync timeout		UTC offset	N/A	 Traffic 	?
_Parent Clock		_Grandmaster Clo	ck	• MPLS frame	
Identity	N/A	Identity	N/A	• MPLS-TP frame	E,
Port number	N/A	Class	N/A	O VLAN frame	-7
Foreign Master		Accuracy	N/A	SyncE	
		Accuracy	N/A	IEEE 1588v2	V
Port number	N/A	Variance ann/est.	N/A / N/A	OAM	
Announce count	N/A	Priority 1/2	N/A / N/A	Transceiver	
	CET				

	This screen presents information about the status of the IEEE 1588 clock.
Local Clock	State Shows the current clock state of the ports (MASTER/SLAVE). A unicast slave may be stuck in INIT-state until the master clock grants access.
	Offset Shows the current offset from the master clock.
	Mean path delay Shows the mean path delay, which is the time from master to slave back to master again, divided by two.
	Sync timeout Shows the current status of Sync Message reception. The Lamp icon becomes red if no Sync Message has been received within five times the Sync interval.
Wall Clock	UTC Shows the current UTC time. Requires an external GPS receiver.
	Current Shows the current wall clock time.
	UTC offset Shows the offset between the wall clock time and the UTC time.
Parent Clock	Identity Shows the identity of a slave's parent clock.
	Port number Shows the port number of a slave's parent clock.
Grandmaster Clock	Identity Shows the identity of the grandmaster.
	Class Shows the class of the grandmaster.
	Accuracy Shows the accuracy of the grandmaster.
	Variance ann/est. Shows the offset variance of the grandmaster. Both the announced value and a calculated estimate are shown (in s^2).
	Priority 1/2 Shows priority 1 and 2 of the grandmaster.
Foreign Masters	Provides a list of detected foreign masters. The identity of the current master is shown in the field, the other masters are listed in a drop-down menu.
	Port number Shows the port number of the currently selected foreign master.
	Announce count Shows the number of Announce Messages received from the currently selected foreign master.

6.1.3.6 OAM

Touching the **OAM** button in the status area of the **Ports Setup** screen displays the status shown below.

		Port 1	Port 2	Application Sele	ector			
	Port	← Strear	n Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM Y.1731	Filter Off	
	Devices	Decode				TeT	 Link Speed: 1 Gbps 	ŧ
	Status	MEP ID	MAC		M-LBM		FDX Ethernet	•
					мсс		• MPLS frame • MPLS-TP frame	
					EXM	DMM	O VLAN frame SyncE	É
l					VSM		IEEE 1588v2	X
	ССМ	AIS					Transceiver	
	0000	BERT	SETUR	P TEST	RESULT 🔐		¥ V 🗾 15∶11	

This screen presents information about the status of the OAM functions. The information is split up on a number of tab pages. Note that the layout of the dialog depends on the currently selected OAM protocol.

Port 1	Port 2	Application S	elector			
Port ←	Stream Setting Answer:	Arp SyncE	IEEE 1588v2 Off	OAM 802.3ah	Filter Off	
Devices Variables	5			S	Link beed: 1 Gbps uplex:	8
Remote Device Mode	N/A			Et	FDX	
Parser Muxer	N/A N/A				Traffic	?
OUI	0				• MPLS frame	
Unidirectional	N/A				• MPLS-TP frame	
Loopback	N/A N/A		•		SyncE	
Var. retrieval	N/A		-		IEEE 1588v2	X
Loop]				OAM Transceiver	
III DOD BERT	<u>SI</u>	<u>TUP</u> test	RESULT	💾 📑 🖘 🛚	V 📑 15 12	

Loop button

Touch the **Loop** button to send the far-end device into loopback mode and reflect frames.

Devices tab page

Shows the status of the remote and local devices.

Variables tab page

On the **Variables** tab page you can request various variables. Select the relevant variable from the drop-down menu and then touch the **Request** button.

802.3ah status information

802.1ag status information

Port 1 P	ort 2	Application Sele	ector			
Port → Stream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.1ag	Filter Off	
Devices Decode	MAC		U-LBM	Sp	Link eed: 1 Gbps plex: FDX	*
		_	M-LBM	Et	nernet Traffic	?
				((• MPLS frame • MPLS-TP frame	ĕ
				¢	O VLAN frame SyncE	ľ
15:13:04 Fault Alarm Clear Hig	ghest Defect = 0				IEEE 1588v2 OAM	×
ССМ					Transceiver	
BERT	SETUP	TEST	RESULT	+ 📑 🖘 🔋	V 📑 15 13	

Message buttons

Allows you to send messages either to a remote $\ensuremath{\mathsf{MEP}}\xspace$ ID or to a unicast MAC Address.

- **U-LBM**: Data-path integrity to/from the far-end to/from one address (unicast).
- **M-LBM**: Data-path integrity to/from the far-end to/from multiple addresses (multicast).
- LTM: Enumerate and identify all hops between two end points.

Fault button

The fault messages are sent when the button is active.

• **CCM**:Continuity Check Messages.

Devices tab page

Shows the current status of the devices.

The outer circle of the colored Lamp in the Status column represents the CCM status (green means that CCMs are received from that RMP, red means no CCMs are received). The inner circle indicates whether the RDI bit in the CCM frame is set (red) or not set (green).

Decode tab page

Shows extra information about LTM frames.

Y.1731 status information

Port 1 Po	rt 2	Application Sele	ector			
Port ← Stream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM Y.1731	Filter Off	
Devices Decode	MAC		U-LBM	Sp TST Du	Link eed: 1 Gbps plex: FDX	8
					nernet Traffic MPLS frame	?
			MCC EXM		O MPLS-TP frame	E Z
15:14:14 Fault Alarm Clear High	hest Defect = 0		VSM		IEEE 1588v2	×
CCM AIS LCK	<u>SETUP</u>	TEST	RESULT 🔐		Transceiver	

Message buttons

Allows you to send messages either to a remote MEP ID or to a unicast MAC Address.

- **U-LBM**: Data-path integrity to/from the far-end to/from one address (unicast).
- **M-LBM**: Data-path integrity to/from the far-end to/from multiple addresses (multicast).
- LTM: Enumerate and identify all hops between two end points.
- MCC: Maintenance communication channel message.
- **EXM**: Experimental message and response.
- VSM: Vendor-specific message and response.
- **TST**: Test message used for Bit Error Rate measurement and /or throughput measurement.
- LMM: Determine packet loss.
- **SLM**: Determine frame loss.
- DM1: One-way delay measurements.
- **DMM**: Propagation delay between two end points.

Fault buttons

The fault messages are sent when the button is active.

- **CCM**:Continuity Check Messages.
- AIS: Alarm Indication Signal.
- LCK: Locked Signal Function.

Devices tab page

Shows the current status of the devices.

The outer circle of the colored Lamp in the Status column represents the CCM status (green means that CCMs are received from that RMP, red means no CCMs are received). The inner circle indicates whether the RDI bit in the CCM frame is set (red) or not set (green).

Decode tab page

Shows extra information about the various frame types.

6.1.3.7 Transceiver

Touching the **Transceiver** button in the status area of the **Ports Setup** screen displays the status shown below.

Port 1 Por	t 2 A	Application Sel	ector			- -
Port → Stream	Settings Answer: Arp	SyncE Off	IEEE 1588v2 Off	OAM 802.3ah	Filter Off	
Module Present	0	Power mo	Tx[dBm] R	x[dBm]	 Link Speed: 10 Gbps 	8
Wavelength and bit rate	1 310 pm		-2.52	-17.92	FDX	
Bit Rate(Nominal)	10 300 Mbps				• Traffic	?
					• MPLS frame • MPLS-TP frame	Ĕ.
					O VLAN frame	1
					SyncE	
					IEEE 1588v2	X
					Transceiver	
BERT	<u>SETUP</u>	TEST	RESULT	🕂 🕞 🛪	¥ V 🗾 15:06	

This screen presents status information about the optical transceiver.

Module Present Green indicates that optical transceiver presents.

Transceiver Information Select the information from pull down menu.

- Wavelength and bit rate shows the nominal wavelength and bit rate.
- Compliance shows the available standards.
- Vendor information shows the data stored in the optical transceiver.

Power monitor The transmitting optical power is displayed in left column. Unit of the optical power is dBm.

The received optical power is displayed in right column. Unit of the optical power is dBm.

6.2 BERT

1101

The Bit Error Rate Test (BERT) described in this section is applicable for Ethernet interfaces.

For BERT of OTN interface, refer to **<u>BERT</u>** in "OTN Application".

6.2.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.2.2 Test Setup

6.2.2.1 Control

When you go to the test setup of the Ethernet BERT application, the following screen is displayed.

	Aj	oplication Se	lector		
Control	Generator		Stream	Thresholds	
Interval length:	5 seconds				
Start action:	Immediate		Start at:	2001-01-01 00:00:00	1 K
Stop function:	Manual stop		Stop at:	2001-01-01 00:00:00	
Memory allocation:	Use all storage		Estimate of test duration	00d:03:25:45	0
Performance Parameters			BERT	Options	
ETH: M.2100				count lost frames as pattern errors	E
			↓ V Ir	nclude addresses in rame filter on receiver	r i
				only show BER Alarms	
			₩ ₩	hen measuring	×
BERT	SETUP	<u>test</u>	RESULT 📑	🗃 🔿 🎖 V 📑 15 15	

This screen contains the parameters that are generally required in a test setup.

Interval length

Allows you to specify the duration of the BERT intervals. The drop-down menu contains the following values: 1, 2, 5, 10, 15, 30 seconds, 1, 5, 10, 15, 30 minutes, 1, 2, 4, 6, 12 hours or No intervals.

Start action

Allows you to specify when the measurement is started.

• If Immediate is selected, the measurement starts when you touch the

Start button.

• Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** button is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- **Use all storage**: When Network Master's memory became full with measured data, the whole measurement is stopped.
- **Continuous**: When Network Master's memory became full with measured data, oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. The estimated value is dependent on the current interface and selections concerning this interface. During an ongoing measurement, the estimate will be recalculated periodically, meaning that the estimate will get better and better. The estimate can be seen on the status line during a measurement.

Performance Parameters The titles of ITU-T Recommendation are below.

- **G.8201** Error performance parameters and objectives for multi-operator international paths within the Optical Transport Network (OTN)
- M.2100 Performance limits for bringing-into-service and maintenance of international multi-operator PDH paths and connections
- M.2401 Error performance limits and procedures for bringing-intoservice and maintenance of multi-operator international paths and sections within an optical transport network
- M.2110 Bringing into service international multi-operator paths, sections and transmission systems

OTN-related

This item appears if 'BERT on OTN' is running.

ΟΤΝ

G.8201, M.2401 (M.2110)

Time period

15 minutes, 1 hour, 2 hours, 24 hours, 7 days

Allocation

Touching the **Setup** button launches the dialog box. Refer to <u>Performance</u> <u>Parameters</u> in "OTN Application" .

Ethernet-related

ETH

M.2100

BERT Options

This option appears in the BERT application.

Count lost frames as pattern errors

Enabling this function means that if a frame is lost then all test pattern bits in the frame are considered errored and will be included in the pattern error counter.

Include addresses in frame filter on receiver

The receiver uses a filter to determine which frames should be counted in the results. When this function is enabled then, by default, the receiver will use the MAC and IP addresses of each incoming frame in addition to the 'filter key' used.

Only show BER Alarms when measuring

BER alarms in Interface status dialog box is enabled only when the measurement is running. This function allows to avoid the BER alarms occurrence when no data is input.

6.2.2.2 Generator

Touching the **Generator** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen contains the traffic-related parameters.

Traffic Duration Allows you to set conditions concerning frames transmission. Choosing **Continuous** will make a continual test sequence. Alternatively, the duration can be set manually in either **Seconds** or **Frames**, coupled with a specification of the number of seconds/frames in the adjacent field.

Automatically start the traffic generator when a test is started In case of **Continuous**, you can select this checkbox to make the traffic generator start synchronously with the test starting.

6.2.2.3 Stream

Touching the **Stream** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

Port 1 Port 2	Application	Selector		
Control	enerator	Stream	Thresholds	
Stream profile	O Voice	Stream Measurement	Follow	B
Encoding: SDTV Number of channels:	(MPEG2)	Jitter	0,0 us	
Line load Ramp	100.0000 %	Latency Requires far-end is lo	op-back device	?
Frame size	Follow	Threshold	0,0 us	E
Constant		Min_disruption	10 frames	1
Start: 124 Step: 64 Dur	End: 88 ation: 1 s			×
BERT	SETUP <u>TES</u>	<u>result</u>	🕒 🔿 🎗 V 🗾 15:16	

This screen contains the parameters for specifying a profile and pattern for each stream and for specifying which measurements are made.

Stream profile Allows you to specify and configure a profile type for the currently selected stream. Using the radio buttons, you can select the stream profile as either **Data**, **Video** or **Voice**.

Encoding

Open the drop-down menu to select the relevant encoding type. The available values depend on the selected profile type.

Number of channels

Specify the number of channels.

Line load Using the radio buttons, you can select the line load profile as either Constant or Ramp. If you select Ramp, you can touch the adjacent button to display the Ramp Line Load Setup dialog box.

Contro	ort 1	Port 2 Ap Ramp	pplication Selector Line Load Setup	,	Thresholds	
Stream pro Data Encoding: Number of	file v	bps 1	OFF	→[s]	0,0 us	*
Line load Consta	nt 🔘	Unit: F Line load start:	Percent Off	Mbps	ack device	?
Frame size		Line load end:	Off)%	10 frames	
Start: Step:	64	Step size: Step duration:	1.0000	%		É
		Ramp mode:	Keep end 🗸			×
III DODD B	ERT	Off	TEST RESULT	Close	≈ 🕅 V 💽 15:16	

The dialog box contains the following settings:

Line load start The line load at which the ramp will start. Line load end The line load at which the ramp will end. (This is the value shown on the line load button.) Step size

The step size from start to end.

Step duration

The duration of each step.

Ramp mode

How the ramp should continue. 3 modes are available:

- **Keep end**: The specified end line load is maintained after the ramp is ended.
- **Repeat ramp**: The ramp is repeated.
- **Invert ramp**: The ramp is inverted.

Frame size Three setups are available, using one or more of the available setting options:

Constant

Uses the fixed frame size specified by the **Start** value for the duration of the test.

Stepped

Steps the frame size from **Start** to **End** in increments of **Step**. Each frame size is transmitted for the period in seconds specified by **Duration**.

If the traffic duration is set to *Continuous* on the **Generator** screen, the step sequence will be repeated indefinitely. If traffic duration is set to *a number of seconds*, the step sequence will be terminated when the specified total period has elapsed. Similarly for traffic duration set to *a number of frames*, the step sequence will be terminated when the total number of transmitted frames reaches the specified count.

Random

Sends a continuous stream of frames of random sizes, evenly distributed between **Start** and **End**.

Frame size is protocol headers and payload combined. Frame size does not include preamble and interframe gap.

StreamSelect one or more of the measurements (Jitter, Latency and Service
disruption) and then specify a threshold value for each.

6.2.2.4 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen. **Follow** button appears when the Port 1 settings can be copy to Port 2.

Port 1	Port 2	Applica	tion Selector			
Control	Generator		Stream		Thresholds	
BERT Threshold Monitorin	g					
Pattern Errors			Ethernet —			8
🔵 Count 🛛 🦳 Ratio	Ratio[%]			Setup		*
Threshold:	0					
Sequence errors						?
Threshold:	0					
Service disruption						r= <mark>7</mark>
Threshold:	50.000 ms					
Total Frame Difference						×
Difference from:	Port1 Rx					
BERT	SETUP	T	EST RESULT	🔐 🖼 🕯	🎫 🖹 🗸 📑 15:1	17

This screen contains the parameters for setting up the various threshold values (i.e. limits) for errors and Pass/Fail status that are used during the monitoring.

Pattern Errors Allows you to enable monitoring of pattern errors (i.e. bit errors) and to set up a threshold value for the bit error ratio.

Choose whether the threshold is specified as an absolute value or a percentage, using the **Count**, **Ratio** and **Ratio** (%) radio buttons, and then specify the value in the **Threshold** field.

Sequence errors Allows you to enable monitoring of sequence errors and to set up the relevant threshold value.

Service
disruptionIf you specify a threshold value for the service disruptions (using the
Threshold field), any disruption whose maximum duration time exceeds
the threshold value will be marked in red on the Test Result screen.

Total FrameAllows you to select the reference port to measure the differential time, usingDifferenceDifference from: drop down menu.

Transport This setting appears in case of BERT on OTN.

When you select the checkbox, you can enable alarm or error thresholds.

Interface

Fixed to OTN.

Evaluation item

Select the item to evaluate. If selecting other than **Any Alarm or Error**, another menu appears.

Evaluation type

Select the relevant type.

Pass & fail threshold

Touch the left-hand number to set the lower limit for "Warning". Touch the right-hand number to set the lower limit for "Fail". The lower limit of "Fail" must be equal to or greater than the lower limit of "Warning" (defining a "Within limits" range in between them).

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

Ethernet When you select the checkbox, you can enable various thresholds. Touch the **Setup** button to display the **Ethernet threshold setup** dialog box.

Port 1	Port 2 Application	on Selector	
Control	Generator	Stream	Thresholds
	Ethernet thr	reshold setup	? ×)
Utilization (%)	< 0.0 %	Fragmented frames	< 0
Throughput (Mbps)	< 0.0	✓ Undersized frames	< 0
Errored frames	< 0	✓ Oversized frames	< 0
Collisions	< 0	FCS errored frames	< 0
Unicast frames	< 0	✔ IFG violations	< 0
Multicast frames	< 0	✓ Preamble violations	< 0
Broadcast frames	< 0	Diff. Tx - Rx1	< 0
✓ Pause frames	< 0		
Select all Clear all			Close
Difference from:	Port1 Rx		
BERT	SETUP TES	i <u>T</u> RESULT 📑 📑 🕬 🖘	▶ V 📑 15:18

In the dialog box, select the checkboxes for the relevant thresholds and then touch the **Close** button to list them on the **Thresholds** screen. You can select/deselect all checkboxes in the dialog box by using the **Select all** / **Clear all** buttons. Touch the individual value fields either in the dialog box or in the list on the screen to specify the threshold values.

The Network Master transmits the 32-bit "jam sequence" eight times when the Ethernet frames collide at any point in the frame. This collision motion is different from the definition of the IEEE Standard. In the "back off" process of the Network Master, the maximum wait time is expanded up to the 12 power of 2. Moreover, the Network Master does not discard the frame when the collision has occurred 16 times.

6.2.3 Test Results

6.2.3.1 Summary

When you go to the test results of the Ethernet BERT application, the following screen is displayed.

This screen contains a summary of the results of the Ethernet BERT test. The information includes such things as number of pattern errors, average and maximum disruption time, and number of exceeded thresholds.

The three dials showing utilization/throughput results, pattern errors and errored frames can be enlarged by clicking on them. The blue needle points the average value from starting the test. The black needle points the measured value in the latest period.

To view throughput information, select **Throughput** in the drop-down menu and then expand the dial. Use the drop-down menu above the expanded dial to select the relevant layer.

When Ethernet is selected on 'Threshold' of Test Setup screen, the Ethernet information appears in the upper right-hand corner, shows pass/fail status summary. Touching the Details button allows you to inspect the individual pass/fail status.

Port 1	t 2 Res	ult File Browser		
2014-06-07 19:15:45	00:	:01:03		
Summary	IEEE1588v2 Log	OAM Log	Statistics 📕	
Avg. utilization:		Fragmented:		*
Avg. throughput:		Undersized:		
Errored:		Oversized:		-
Collisions:		FCS Errored:		?
Unicast frame:		IFG Violations:		Ĕ.
Multicast frame:	Fail	Preamble Violations:		r a
Broadcast frame:		Frame Diff.:		
Pause frame:				×
			Close	
BERT	SETUP	TEST <u>RESULT</u>	📑 🗃 🔿 🕅 V 📑 19 16	

Displays the results of Transport test. This result appears if 'Transport'

Transport

Pattern

insertion

Select the pattern.

Pattern Error This provides the Error insertion same as Stimuli setup options in Application Toolbar.

checkbox is selected in Test Setup screen.

Insertion

If selecting Manual, error(s) are inserted when you touch the Alarm/Error Insert icon (🛃) button.

Set **Off** to stop the error insertion.

Burst length

If 'Insertion' is set to **Manual**, touch the button and set the number of errors to insert.

6.2.3.2 IEEE1588v2 Log

Touching the **IEEE1588v2 Log** button in the navigation area will display the screen shown below.

This screen presents an IEEE1588v2 Log of the test results. You can search the messages by specifying the type.

Search

Message type

Select the message type from below.

- Announce
- DelayReq
- DelayResp
- FollowUp
- Management
- PDelayReq
- PDelayResp
- PDelayRespFollowUp
- Signaling
- Sync

Select the search method.

- Filter
- Previous
- Next

6.2.3.3 OAM Log

Touching the **OAM Log** button in the navigation area will display the screen shown below.

This screen presents an OAM Log of the test results. Note that the layout of the dialog box depends on the currently selected OAM protocol.

6.2.3.4 Statistics

Touching the **Statistics** button in the navigation area displays the screen shown below.

This screen presents a detailed analysis of the test results. You can choose to view either the total results from measurement start or the results of a specific interval during the test. You can also zoom in on a specific result item. The results can be displayed either in table (list) form or as a graph.

Selecting which results to view

Selecting the interval time Touch the **Total** button to switch the total values measured in all interval times. The start time of measurement is displayed on the button.

Touching the button in left side **Back** field shows the measured values in the interval time. The end time of the interval is displayed on the button.

Current button is displayed at left bottom when the measurement is running. Touching the **Current** button shows the measured values in the current interval time. The start time of the current interval is displayed on the button.

The slide-out panel on the left-hand side of the screen contains the following functions:

- Only show intervals that contains errors
- Time format

If you have stopped measurement during the interval time, the measurement results of current interval are discarded. The log of current interval is not displayed in **Back** field.

In this case, result data are re-calculated excluding the data of current interval when the measurement is stopped. This causes that "Count" and "Ratio" displayed after the measurement will be different from that of during measurement.

The sum of interval time (multiplied interval time by the number of back logs) may not match the differential time between displayed time at left top and right top after the measurement.

Selecting type of Open the middle drop-down menu in the top row of buttons to select which results you want displayed on the screen.

- BERT
- Performance
- Frame
- Burst
- Size Distribution
- Transmit
- Latency
- Jitter
- SyncE
- IÉEE 1588v2
- 802.3ah
- 802.1ag/Y.1731

Studying a specific result Touch a specific cell in a result table to zoom in on the corresponding result item. The Count and Ratio fields are displayed on a Zoom tab page. A Time vs. Statistics tab page is also available. Use the Back button or touch the zoom filed to return to the statistics screen.

Selecting how results are displayed

Selecting notation Select the required notation for the results from the notation drop-down menu.

- Unformatted e.g. 71892
- **SI prefix** e.g. 71.892 k (k means "kilo")
- Engineering e.g. 71.892E3
- Scientific e.g. 7.1892E4

Results

Results are displayed according to your choice.

BERT Results BERT Service disruption M.2100 Throughput Latency Jitter Performance Results Utilization Throughput Frame rate Frame Results Alarms **Good Frames Errored Frames Other Frames** Last Received **Burst Results** Frames **Burst Size** Size Distribution Results **Total Frames** Size Dist. **Frame Size Transmit Results** Traffic Frame Diff. Latency Results Jitter Results SyncE Results SSM Statistics Alarms **Rx SSM QL** IEEE 1588v2 Results **Offset Stat Offset Variance Mean Path Delay** PDV **Message Stat Clock Status Stat.** 802.3ah Results 802.1ag/Y.1731 Results

<u>-</u>

The Ethernet Cable Test uses Time Domain Reflectometry (TDR) to validate and detect open and short circuited CAT5/CAT5E cables. This test is convenient for installation and troubleshooting of cables.

Time Domain Reflectometry Principle

The TDR method can be used for control of electrical cables. The TDR transmits a short pulse which will be fully absorbed if the cable is perfectly terminated. In case of open or short circuited cables, the pulse will be reflected.

- An open circuited cable will result in an *increase* of impedance.
- A short circuited cable will result in a *decrease* of impedance.

These conditions will give a pulse reflection in an either positive or negative mirrored pulse. If the time is measured and the speed of the signal in the cable is known, a distance to the problem can be estimated.

The magnitude of the reflection (called the *reflective coefficient P*) can be found from a formula involving the impedance to the load (Z_t) and the resistance in the media (Z_0):

 $P = (Z_t - Z_0) \text{ over } (Z_t + Z_0).$

 $\mathsf{P}=\mathbf{0}$ indicates no reflection. +1 indicates an open circuit, and -1 indicates a short circuit.

Wiring of Ethernet Cables

A CAT5/CAT5E cable consists of 4 twisted pairs which typically are terminated in a RJ45 connector.

CAT5

Defined in *ANSI/TIA/EIA-568-A*. The color code referring to this standard is called **T568A**.

CAT5E

Defined in *TIA/EIA-568-B*. The color code referring to this standard is called **T568B**.

6.3.1 Test Setup

When you go to the test setup of the Ethernet Cable Test, the following screen is displayed.

This screen allows you to control and monitor an Ethernet Cable Test.

Test setup controls

information

Color Coding Standard

Allows you to select the color coding used for the graphical representation of the cables. n the drop-down menu you can choose between T-568A (CAT5) and T-568B (CAT5E).

Test monitoring Pair

Lists the individual cable pairs in relation to the pin number and color coding.

Status

Shows the status of the wires inside the cable. The Lamp indicator will be green if there is no problem and red if there is a problem.

- **OK** indicates a fully functional cable.
- Short indicates an short circuited cable.
- **Open** indicates an open circuited cable.

Distance to fault

In case of cable troubles (i.e. an open or a short circuit) the distance to the problem will be indicated approximately in this field.
6.4 Mon/Gen

Ethernet Monitor/Generate is typically used for out-of-service and performance testing. It is possible to perform a passive, non-intrusive monitoring or at the same time transmit test data, which can be reflected for further evaluation and testing of the network.

6.4.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the Ports Setup screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.4.2 Test Setup

Copy frame content to other stream(s)

This feature allows you to copy the frame content of the stream that you are currently configuring to all streams in another port or to a single stream.

Сору То

Touching the **Copy To** button opens a drop-down menu from which you can select the relevant port and All or a specific stream.

6.4.2.1 Control

When you go to the test setup of the Ethernet Monitor/Generate application, the following screen is displayed.

	A	pplication Sele	ctor		
Control	Generator		Streams	Thresholds	
Interval length:	5 seconds				
Start action:	Immediate		Start at:	2001-01-01 00:00:00	R.
Stop function:	Manual stop	•	Stop at: (2001-01-01 00:00:00	
Memory allocation:	Use all storage		Estimate of test duration	00d:03:25:45	0
					E,
					Í
					×
		_			
Mon./Gen.	SETUP	TEST	RESULT 📑	🗃 🖈 🎖 V 📑 15:31	

This screen contains the parameters that are generally required in a Monitor/Generate test setup.

Interval length

Allows you to specify the duration of the test intervals. The drop-down menu contains the following values: 1, 2, 5, 10, 15, 30 seconds, 1, 5, 10, 15, 30 minutes, 1, 2, 4, 6, 12 hours or No intervals.

Start action

Allows you to specify when the measurement is started.

- If **Immediate** is selected, the measurement starts when you touch the **Start** button.
- Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** icon is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- **Use all storage**: When Network Master's memory became full with measured data, the whole measurement is stopped.
- **Continuous**: When Network Master's memory became full with measured data, oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. During an ongoing measurement, the estimate will be recalculated periodically.

Performance Parameters OTN-related

This item appears if 'Mon./Gen. on OTN' is running. Refer to "<u>Performance</u> <u>Parameters</u>" in BERT.

6.4.2.2 Generator

Selecting the **Generator** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen contains the traffic-related parameters.

Traffic Duration Allows you to set conditions concerning frames transmission. sequence. Selecting **Continuous** will make a continual test. Alternatively, the duration can be set manually in either **Seconds** or **Frames**, coupled with a specification of the number of seconds/frames in the adjacent field.

> Automatically start the traffic generator when a test is started In case of **Continuous**, you can select this checkbox to make the traffic generator start synchronously with the test starting.

6.4.2.3 Streams

Touching the **Streams** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

Port 1	Port 2 Application	Selector	
Control	Generator	Streams	Thresholds
1 Stream 1 profile V Data V Encoding: Number of channels: Line load	deo Voice SDTV (MPEG2)	Stream 1 M	Copy To Measurement Ioss shold it Ratio 0
Frame size	tamp 5.000 Mbps Total: 5.000 Mbps opy To	jitter – Thre	shold 0,0 us
Start: 124 Step: 64	End: 88 Duration: 1 s	Thre	shold 0,0 us
Mon./Gen.	SETUP TES	RESULT	📴 🗃 🛪 🛛 V 📑 15:32

This screen contains the parameters for specifying a profile and pattern for each stream and for specifying which measurements are made.

- **Stream selection** Use the slide-out panel on the left-hand side of the screen to select the relevant stream. Enable the stream by touching the button on the slide-out panel.
- **Stream X profile** Using the radio buttons, you can select the stream profile as either **Data**, **Video** or **Voice**.

Encoding

Open the drop-down menu to select the relevant encoding type. The available values depend on the selected profile type.

Number of channels

Specify the number of channels.

Line load Using the radio buttons, you can select the line load profile as either Constant or Ramp. If you select Constant button, touch the adjacent button to set the line load. If you select Ramp, you can touch the adjacent button to display the Ramp Line Load Setup dialog box. When 'Off' is displayed on the button, no streams are transmitted.

	Port 1	Port 2 App	lication Selector			
	Control	Ramp I	ine Load Setup		Thresholds	
1	_Stream 1 profile	bps				\bigcirc
-	🔵 Data 🔷 Vi	(OFF			8
	Encoding: Number of channels:			→[s]		
	Line load Oracle Constant	Unit:	Percent	1bps	0	?
		Line load start:	Off	Mbps		
	Frame size	Line load end:	Off	Mbps	0.0 us	F
	Constant	Step size:	10.000	Mbps		Ê
	Church DD4	Step duration:	10		ack device	
	Start: 124 Step: 64	Ramp mode:	Keep end 🛛)	0.0 us	×
		Off		Close		
	Mon./Gen.	SETUP	TEST RESULT	🛛 💾 🖾 🤋	🛪 🖹 🗸 💽 15 32	

The dialog box contains the following settings:

Line load start

The line load at which the ramp will start.

Line load end

The line load at which the ramp will end. (This is the value shown on the line load button.)

Step size

The step size from start to end.

Step duration

The duration of each step.

Ramp mode

How the ramp should continue. 3 modes are available:

- **Keep end**: The specified end line load is maintained after the ramp is ended.
- **Repeat ramp**: The ramp is repeated.
- **Invert ramp**: The ramp is inverted.

Frame size Three setups are available, using one or more of the available setting options:

Constant

Uses the fixed frame size specified by the **Start** value for the duration of the test.

Stepped

Steps the frame size from **Start** to **End** in increments of **Step**. Each frame size is transmitted for the period in seconds specified by **Duration**.

If the traffic duration is set to *Continuous*, the step sequence will be repeated indefinitely. If it is set to *a number of seconds*, the step sequence will be terminated when the specified total period has elapsed. Similarly for *a number of frames*, the step sequence will be terminated when the total number of transmitted frames reaches the specified count.

Random

Sends a continuous stream of frames of random sizes, evenly distributed between **Start** and **End**.

Frame size is protocol headers and payload combined. Frame size does not include preamble and interframe gap.

Stream XSelect one or more of the measurements (Frame loss, Jitter and Latency)measurementand then specify a threshold value for each.

6.4.2.4 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen allows you to set up a number of special monitoring items related to the various interface types. Refer to <u>Thresholds</u> in BERT section. When specified and enabled, these threshold values (i.e. limits) for errors and Pass/Fail status will be used during the monitoring. **Transport** appears in case of Mon./Gen. on OTN.

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

6.4.3 Test Results

6.4.3.1 Summary

When you go to the test results of the Ethernet Monitor/Generate application, the following screen is displayed.

This screen contains a summary of the results of the Ethernet Monitor/Generate test. The information includes such things as number of errored frames and number of exceeded thresholds.

The three dials showing utilization/throughput results, pattern errors and errored frames can be enlarged by touching on them. The blue needle points the average value from starting the test. The black needle points the measured value in the latest period.

To view throughput information, select **Throughput** in the drop-down menu and then expand the dial. Use the drop-down menu above the expanded dial to select the relevant layer.

When **Ethernet** is selected on 'Threshold' of Test Setup screen, the **Ethernet** information appears in the upper right-hand corner, shows pass/fail status summary. Touching the **Details** button allows you to inspect the individual pass/fail status.

Port 1	2 Rest	ult File Browser			
2014-06-07 15:34:54	00:0	00:42			
Summary	IEEE1588v2 Log	OAM Log		Statistics 📕	
Avg. utilization:	Fail	Fragmented:			*
Avg. throughput:	Fail	Undersized:			
Errored:		Oversized:			
Collisions:		FCS Errored:			?
Unicast frame:	Fail	IFG Violations:			¥,
Multicast frame:		Preamble Violations:			É7
Broadcast frame:		Frame Diff.:			
Pause frame:					×
				Close	
Mon./Gen.	SETUP	test <u>RESULT</u>	💾 📑 🖘 🛚	V 🗾 15 35	

Transport

Displays the results of Transport test. This result appears if 'Transport' checkbox is selected in Test Setup screen.

The stream slide-up at the bottom of the screen allows you to configure and inspect the measurements of each individual stream. Display/Hide the slideup by touching the handle icon. You can set up thresholds for frameloss, latency and jitter for each stream as well as inspect the measurement results.

6.4.3.2 IEEE1588v2 Log

If **Ext. log** is selected in IEEE1588v2 screen of Ethernet Frame Setup, the **IEEE1588v2 Log** button appears in the navigation area. Refer to <u>IEEE1588v2</u> Log in BERT for the operation.

6.4.3.3 OAM Log

The operation of **OAM Log** screen is the same as that of BERT application. Refer to $\underline{OAM Log}$ in BERT for the operation.

6.4.3.4 Statistics

Touching the **Statistics** button in the navigation area displays the screen shown below.

This screen presents a detailed analysis of the test results. You can choose to view either the total results from measurement start or the results of a specific interval during the test. You can also zoom in on a specific result item. The results can be displayed either in table (list) form or as a graph.

Selecting which results to view

Selecting the interval time

Touch the **Total** button to switch the total values measured in all interval times. The start time of measurement is displayed on the button.

Touching the button in left side **Back** field shows the measured values in the interval time. The end time of the interval is displayed on the button.

Current button is displayed at left bottom when the measurement is running. Touching the **Current** button shows the measured values in the current interval time. The start time of the current interval is displayed on the button.

The slide-out panel on the left-hand side of the screen contains the following functions:

- Only show intervals that contains errors
- Time format

If you have stopped measurement during the interval time, the measurement results of current interval are discarded. The log of current interval is not displayed in **Back** field.

In this case, result data are re-calculated excluding the data of current interval when the measurement is stopped. This causes that "Count" and "Ratio" displayed after the measurement will be different from that of during measurement.

The sum of interval time (multiplied interval time by the number of back logs) may not match the differential time between displayed time at left top and right top after the measurement.

Selecting type of Open the middle drop-down menu in the top row of buttons to select which results you want displayed on the screen.

- Performance
- Frame
- Burst
- Size Distribution
- Transmit
- Multi Stream Transmit
- Multi Stream Throughput
- Multi Stream Frame Loss
- Multi Stream Latency
- Multi Stream Jitter
- SyncE
- IEEE 1588v2
- 802.3ah
- 802.1ag/Y.1731

Studying a specific result

Touch a specific cell in a result table to zoom in on the corresponding result item. The **Count** and **Ratio** fields are displayed on a **Zoom** tab page. A **Time vs. Statistics** tab page is also available. Use the **Back** button or touch the zoom filed to return to the statistics screen.

Selecting how results are displayed

Selecting
notationSelect the required notation for the results from the notation drop-down
menu.

- Unformatted e.g. 71892
- **SI prefix** e.g. 71.892 k (k means "kilo")
- **Engineering** e.g. 71.892E3
- Scientific e.g. 7.1892E4

Results

Results are displayed according to your choice.

Performance Utilization Throughput Frame rate Frame Alarms Good Frames **Errored Frames Other Frames** Last Received Bursts Frames **Burst Size** Size Distribution **Total Frames** Size Dist. Frame Size Transmit Traffic Frame Diff. Multi Stream Transmit Traffic Multi Stream Throughput Throughput Multi Stream Frame Loss Frame Loss Multi Stream Latency Latency(us) Multi Stream Jitter

Jitter(us) SyncE SSM Statistics Alarms Rx SSM QL IEEE 1588v2 Offset Stat. Offset Variance Mean Path Delay PDV Message Stat Clock Status Stat. 802.3ah 802.1ag/Y.1731

6.5 Pass Through

1 10 1

Ethernet Pass Through enables non-intrusive in-service monitoring for both fast troubleshooting and detailed analysis of the live traffic on a network. All traffic received on a port is forwarded on the other port and vice versa. Traffic between the two network DUT elements is monitored as illustrated below.

6.5.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.5.2 Test Setup

6.5.2.1 Control

When you go to the test setup of the Ethernet Pass Through application, the following screen is displayed.

		Application S	elector		
Con	ntrol		Thre	sholds	
Interval length:	5 seconds				\bigcirc
Start action:	Immediate		Start at:	2001-01-01 00:00:00	
Stop function:	Manual stop		Stop at:	2001-01-01 00:00:00	?
Memory allocation:	Use all storage		Estimate of test duration	00d:03:25:45	
					Í
Pass Throug	gh SE1	rup <u>TEST</u>	RESULT 💾	🗃 🔿 🎖 V 📑 18 53	

This screen contains the parameters that are generally required in a *Pass Through* test setup.

Interval length

Allows you to specify the duration of the test intervals. The drop-down menu contains the following values: 1, 2, 5, 10, 15, 30 seconds, 1, 5, 10, 15, 30 minutes, 1, 2, 4, 6, 12 hours or No intervals.

Start action

Allows you to specify when the measurement is started.

- If **Immediate** is selected, the measurement starts when you touch the **Start** button.
- Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** icon is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- **Use all storage**: When Network Master's memory became full with measured data, the whole measurement is stopped.
- **Continuous**: When Network Master's memory became full with measured data, oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. During an ongoing measurement, the estimate will be recalculated periodically.

6.5.2.2 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

Ethernet

When you select the checkbox, you can enable various thresholds. Touch the **Setup** button to display the **Ethernet threshold setup** dialog box.

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

6.5.3 Test Results

6.5.3.1 Summary

When you go to the test results of the Ethernet Pass Through application, the following screen is displayed.

This screen contains a summary of the results of the Ethernet Pass Through test. The information includes such things as number of errored frames and number of exceeded thresholds. The three dials showing utilization/throughput results, pattern errors and errored frames can be enlarged by touching on them. The blue needle points the average value from starting the test. The black needle points the measured value in the latest period.

When **Ethernet** is selected on 'Threshold' of Test Setup screen, the **Ethernet** information appears in the upper right-hand corner, shows pass/fail status summary. Touching the **Details** button allows you to inspect the individual pass/fail status. Refer to <u>Summary</u> in BERT section.

6.5.3.2 OAM Log

The operation of **OAM Log** screen is the same as that of BERT application. Refer to $\underline{OAM \text{ Log}}$ in BERT for the operation.

6.5.3.3 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

6.6 Ping

The Ethernet Ping test is a quick and easy way for testing, troubleshooting and verification of connectivity and latency. Packets are sent from the source address to the destination address and back again - allowing the user to determine whether traffic is possible.

6.6.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.6.2 Test Setup

When you go to the test setup of the Ethernet Ping application, the following screen is displayed.

Port 1	Application Selector		
			(
Continuous			
Seconds	30		
Ping requests	10		
Threshold			
Timeout:	500	ms	
_ Traffic			
Request interval:	4	sec	
Frame size:	70	bytes	
			_
🚯 Ping	SETUP TEST RESU	JLT 🛛 🔐 🔿 🕅 🗸 🔀 18 16	

This screen allows you to configure the Ping test conditions for the currently selected port.

Test Duration Allows you to define the test duration in one of three ways:

- Continuous Used when a persistent Ping test is needed.
- Seconds Used to define the test duration in seconds.
- **Ping requests** Used to define the test duration in *number of ping requests*.

Threshold Allows you to specify the **Timeout** threshold value in milliseconds (ms).

Traffic Request interval

Allows you to specify the interval between frames in seconds. When the value is set to zero (**0**), frames are transmitted back-to-back.

Frame size

Allows you to specify the frame size in bytes.

Frame size is protocol header and payload combined. Frame size does not include preamble and interframe gap.

6.6.3 Test Results

The results of an Ethernet Ping test relate to a specific port and consist of the Round Trip Times of the ping requests. The data is shown in both list-form and in a graphical presentation.

Graphical The graphical presentation consists of a bar diagram of the Round Trip Times and of a pie chart showing the percentage distribution of echo replies and timeouts.

6.6.3.1 Summary

When you go to the test results of the Ethernet Ping test, the following screen is displayed.

This screen presents a summary of the results of an Ethernet Ping test. The results relate to a specific port and consist of information about sent/received/lost packages and the minimum/maximum/average Round Trip Time.

Graphical The graphical presentation consists of a pie chart showing the percentage distribution of received/lost packages.

6.6.3.2 IEEE1588v2 Log

If **Ext. log** is selected in IEEE1588v2 screen of Ethernet Frame Setup, the **IEEE1588v2 Log** button appears in the navigation area. Refer to <u>IEEE1588v2</u> Log in BERT for the operation.

6.6.3.3 Detailed

Touching the **Detailed** button in the navigation area will display the following screen.

This screen presents the detailed results of an Ethernet Ping test. The results relate to a specific port and consist of the Round Trip Times of the individual Ping requests. The data is shown in both list-form and in a graphical representation.

Graphical The graphical presentation consists of a bar diagram of the round trip times. **presentation**

6.6.3.4 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

6.7 Reflector

In *Ethernet Reflector* mode the Network Master loops incoming traffic on a port swapping MAC and/or IP addresses.

HDX (Half Duplex) is not possible in 'Reflector' mode.

6.7.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.7.2 Test Setup

6.7.2.1 Control

When you go to the test setup of the Ethernet Reflector application, the following screen is displayed.

		Application Se	elector		
Co	ntrol		Three	sholds	
Interval length:	5 seconds				\bigcirc
Start action:	Immediate		Start at:	2001-01-01 00:00:00	
Stop function:	Manual stop		Stop at:	2001-01-01 00:00:00	?
Memory allocation:	Use all storage		Estimate of test duration	00d:03:25:45	
					ľ
					V
Reflector	SETU	P <u>TEST</u>	RESULT	🗃 🖈 🎖 V 🗾 16 28	

This screen contains the parameters that are generally required in a Reflector test setup.

Interval length

Allows you to specify the duration of the test intervals. The drop-down menu contains the following values: 1, 2, 5, 10, 15, 30 seconds, 1, 5, 10, 15, 30 minutes, 1, 2, 4, 6, 12 hours or No intervals.

Start action

Allows you to specify when the measurement is started.

- If **Immediate** is selected, the measurement starts when you touch the **Start** button.
- Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** icon is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- **Use all storage**: When Network Master's memory became full with measured data, the whole measurement is stopped.
- **Continuous**: When Network Master's memory became full with measured data, oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. During an ongoing measurement, the estimate will be recalculated periodically.

Performance Parameters OTN-related

This item appears if 'Reflector on OTN' is running. Refer to "<u>Performance</u> <u>Parameters</u>" in BERT.

6.7.2.2 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen.

Follow button appears when the Port 1 settings can be copy to Port 2.

This screen allows you to set up a number of special monitoring items related to the various interface types. When specified and enabled, these threshold values (i.e. limits) for errors and Pass/Fail status will be used during the monitoring.

Total Frame
DifferenceAllows you to select the reference port to measure the differential time, using
Difference from: drop down menu.

Ethernet When you select the checkbox, you can enable various thresholds. Touch the **Setup** button to display the **Ethernet threshold setup** dialog box same as BERT.

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

6.7.3 Test Results

6.7.3.1 Summary

When you go to the test results of the Ethernet Reflector application, the following screen is displayed.

This screen contains a summary of the results of the Ethernet Reflector test. The information includes such things as number of errored frames and number of exceeded thresholds.

The three dials showing utilization/throughput results, pattern errors and errored frames can be enlarged by touching on them. The blue needle points the average value from starting the test. The black needle points the measured value in the latest period.

When **Ethernet** is selected on 'Threshold' of Test Setup screen, the **Ethernet** information appears in the upper right-hand corner, shows pass/fail status summary. Touching the **Details** button allows you to inspect the individual pass/fail status. Refer to <u>Summary</u> in BERT section.

6.7.3.2 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

6.8 RFC 2544

Z,

The RFC 2544 is a benchmarking methodology and defines a number of tests to be used for describing the performance characteristics of a network device (or a complete network). The Network Master includes several physical setups (test modes) and four different tests.

Throughput Test

The throughput is the fastest rate at which a DUT (Device Under Test) can forward frames without frame loss for a specific frame size. That is, the fastest rate at which the count of test frames transmitted by the DUT is equal to the number of test frames sent to it by the test equipment.

Frame Loss Test

Used to determine the frame loss rate of a DUT throughout the entire range of input data rates and frame sizes.

Latency Test

Used to determine the duration from when the frame left the unit to when the frame returned to the unit. The test is done for different line loads for a specific frame size.

Burst Test

This is also called burstability or back-to-back test. The burst value is the number of frames in the longest burst that the DUT will handle without the loss of any frames.

If your test parameters are identical for the throughput and the frame loss test, use the combined test 'Throughput and Frame loss' to save time and enhance overview at the results pages.

6.8.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.8.2 Test Setup

6.8.2.1 Control

When you go to the test setup of the RFC 2544 application, the following screen is displayed.

This screen allows you to specify your test mode and select which RFC 2544 tests to carry out.

Select Test Mode 4 different test modes are available:

- Switch/Router test
- Router latency test
- End to end network test
- Single ended network test

Select the test mode to define your test configuration. See the description of the test modes below.

Test Selection

• <u>Throughput</u>

- Frame Loss
- Throughput and Frame Loss

Select one or more of the following RFC 2544 tests:

- Latency
- Burst

For each test that you select, a separate test setup screen will become available, containing the relevant setup parameters for that test. Similarly, the test results will include only the tests that you have selected in 'Test Selection'.

Test Mode Descriptions

Switch/Router test

In this test mode one instrument is able to test, e.g. the data link layer of a switch or router. Both ports must be active and linked in this mode, with port 2 in follow port 1 mode. IP and MAC-addresses must be swapped, ensuring that the switch will forward frames from port 1 to port 2 and vice versa.

Testing in this mode

- Throughput test
- Frame Loss test
- Throughput and Frame Loss test
- Latency test
- Burst test

Both ports must be activated in order to perform the Switch/Router test. You cannot select 'Throughput and Frame Loss' and 'Throughput' / 'Frame Loss' at the same time.

Router latency test

In this test mode, the latency-test sends out ping frames, used for measuring the response time for router equipment. The maximum line load for the Router Latency Test is 1 Mbps.

The Network Master is capable of responding to incoming ping frames, and can thus be used to run the Router Latency Test port to port, if required.

When the instrument is used to reply to incoming ping frames, the settings of the Encapsulation type and VLAN/no VLAN in port traffic setup will decide which ping requests to answer. So do VLAN ID and Address setups.

The Router Latency Test works with both IPv4/ICMPv4 and IPv6/ICMPv6.

Testing in this mode

• Latency test

End to end network test

In this test mode, two Network Master units will work together performing an RFC 2544 test. The unit initiating the test is the *Local* unit and the other unit is the *Remote* unit. Control information is sent from the 'remote' unit on port 1 (alternative, port 2 will be used, if port 1 is turned off). When the test is started on the 'local' unit, the unit will try to contact the 'remote' unit on the control port using the Destination IP and MAC address (or use ARP if selected). If the 'remote' unit receives the communication on a port with a matching Source address, the test will begin. Apart from the Address setup, both the 'local' and the 'remote' unit should have the *Accept Network Master Configuration frames* option enabled.

The only needed setups on the 'remote' side are the source addresses and the enabling of Accept incoming configuration frames. The complete RFC 2544 setup is transferred from the 'local' unit when the test is started (except for the address setup which is optional).

When the test is started on the 'local' unit, a popup will appear on the 'remote' unit, telling that the unit is being remotely controlled - providing a 'break connection' button. The popup will disappear when the test is completed or stopped on the 'local' unit.

When the test is completed, the test results are transferred from the 'remote' unit to the 'local' unit. **Remote 1** and **Remote 2** buttons appear in Navigation area for displaying the 'remote' side test results.

The local results and 'remote' results are related in the way that Tx statistics for the local ports match up with the Rx statistics for the remote ports and vice versa.

The End to End Test can be run in several modes: By default, both ports are used for transmitting and receiving on both the 'local' unit and the 'remote' unit. Depending on the address setup the test will run either Local port 1 > Remote port 1, and Local port 2 > Remote port 2 or vice versa.

If **One Way** is selected, the test will transmit frames from either the 'remote' unit or the 'local' unit.

Testing in this mode

- Throughput test
- Frame Loss test
- Throughput and Frame Loss test
- Burst test

Note that you cannot select 'Throughput and Frame Loss' and 'Throughput' / 'Frame Loss' at the same time.

Single ended network test

This test is used when testing network by reflecting traffic back to the Network Master. This requires a device to reflect the traffic back e.g. a second Network Master.

If both ports are active, the test will require both ports to be linked and do a dual 'Single ended network test'. Turn off one of the ports to only test on one of the ports.

Testing in this mode

- Throughput test
- Frame Loss test
- Throughput and Frame Loss test
- Latency test
- Burst test

Note that you cannot select 'Throughput and Frame Loss' and 'Throughput' / 'Frame Loss' at the same time.

6.8.2.2 Throughput

Only available if you have specified a Throughput test on the 'Control' of Test Setup screen.

Touching the **Throughput** button in the navigation area will display the screen shown below.

This screen allows you to configure the following parameters related to an RFC 2544 Throughput test:

The changes affect both Port 1 and Port 2 when the Switch/Router Test mode is selected.

Frame Size
(Bytes)Frame size can be specified in 3 ways. Observe that the screen layout
changes depending on the type of Frame Size selected.

User Defined

Checkboxes for the following predefined sizes are available: **64**, **128**, **256**, **512**, **768**, **1024**, **1280**, **1518** and **1519** to **16000**(Using the field at right bottom).

Stepped

Setup of **Start frame size**, **End frame size** and **Step frame size** is available. The frame size starts at *Start frame size* and increases/decreases in intervals of *Step frame size* until the frame size is

above/below End frame size (the increase or decrease depending on the specified start and end values).

Constant

A **Frame size** field for specifying the constant size is available.

The 'stepped' mode is convenient for testing different frame sizes consistently and equally distributed. As a consequence it produces more smooth and detailed graphs when the step frame size is arbitrarily low. The test extends in time for smaller step frame sizes.

Frame size is protocol headers and payload combined. Frame size does not include preamble and interframe gap.

Line Load (Mbps) The different test line loads used in the test are specified as a Minimum (Min) and Maximum (Max) - varied in intervals of the value specified in the Step field. The test always starts at Maximum line load and decreases until the line load is less than Minimum. The results can be presented in either Mbps or as Percent.

Valid range of *Min*, *Max*, *Step* depends on the unit and Ethernet interface.

Percent

0.0008 to 100.0000 %.

Mbps

10M interface: 0.00008 to 10.000 Mbps *1 100M interface: 0.0008 to 100.00 Mbps *1 1G interface: 0.008 to 1000.00 Mbps *1 10G interface: 0.08 to 10000.00 Mbps *2

*1: Setting is only available with the Ethernet 10/100/1000 interface.

*2: Setting is only available when the Ethernet 10 Gig option is installed.

Stop on no frame loss at maximum utilization

The test will continue to test the next frame size if the current test step at a specific line load and frame size does not have any frames lost.

Auto Search

Allows you to let the test automatically find the maximum line load that gives zero frame loss, using a specified resolution. Auto Search can run in one of the two following modes:

• **Smart** that assumes that there is a higher probability of frame loss occurring closer to Max, and therefore makes a skewed binary search searching the higher line loads first.

• **Binary** that will perform a binary search of the specified line load interval from Max to Min.

The **Resolution** field lets you specify the precision of the auto search. A higher precision extends the duration of the test. Available resolutions are: **0.1**, **1.0** and **10.0** %.

The check boxes are enabled except when selecting 'End to End network test' on Control screen.

Duration

Specify the approximate duration in time of each step of the test. It can be set to a number of seconds (minimum 3 seconds).

Repeats

Step

Specify the number of times the complete test will repeat. Valid range: **0** to **1000**.

6.8.2.3 Frame Loss

Only available if you have specified a Frame Loss test on the 'Control' of Test Setup screen.

Touching the **Frame loss** button in the navigation area will display the screen shown below.

		Application Selector			
Control	Throughput	Frame loss		Advanced	
Frame Size (Bytes)		Line Load (Mbps)		Percent	
Start frame size:	64	Auto Search	Min:	1.0000 %	?
End frame size:	256		Max:	100.0000 %	F
Step frame size:	64		Step:	10.0000 %	
Duration		Notice that minimum effectiv	re load is 10.	0000 %	×
Step: 10	s Repeats: 0				
RFC 2544	SETUP	TEST RESULT	- 📔 🕑 🔊	16:50 🕅	

This screen allows you to configure the following parameters related to an RFC 2544 Frame Loss test:

- Frame Size
- Line Load
- <u>Duration</u>

The parameters are identical to the ones described in the *Throughput* section above.

6.8.2.4 Throughput and Frame Loss

Only available if you have specified a 'Throughput and Frame Loss' test on the 'Control' of Test Setup screen. Use this test if you want to perform both a Throughput test and a Frame Loss test while using the same test parameters for both. Touching the **Throughput and frame loss** button in the navigation area will launch the screen shown below.

Contr	ol	Throug	nput and frame loss		Advanced		
Frame Size (I	Bytes)		Line Load (Mbps)				
User Defined	Stepped	Constant	Stop on no frame los at maximum utilization	s n	Percent		
64	128	256	Auto Search	Min:	1.0000	%	?
512	768	1024		Max:	100.0000	%	F
1280	1518	1582		Step:	10.0000	%	
			Notice that minimum effec	tive load is 10	.0000 %		
_Duration							X
Step:	10 s	Repeats: 0					
🛃 RFC 2	2544	SETUP	TEST RESULT	<u> </u>	🦈 🛚 V 💌	16:51	

This screen allows you to configure the following parameters related to an RFC 2544 Throughput and Frame Loss test:

- Frame Size
- Line Load
- <u>Duration</u>

The settings for 'Throughput and Frame Loss' are identical to the ones described in the *Throughput* section above.

6.8.2.5 Latency

Only available if you have specified a Latency test on the 'Control' of Test Setup screen.

Touching the **Latency** button in the navigation area will display the screen shown below.

		Application Selector	
Control Throughp	ut and frame loss	Latency Burst Advanced	
Frame Size (Bytes)	ed 🔘 Constant	Line Load (Mbps) Only run steps where other test passed	
Frame size:	256	Throughput 💌	?
		Tolerance Level (Utilization multiplier):	
Duration Step: 10 s	Repeats: 0		×
Ⅲ 🛃 RFC 2544	SETUP	P <u>TEST</u> RESULT 🔋 🍽 💎 🔀 V 💽 16 52	

This screen allows you to configure the parameters related to an RFC 2544 Latency test:

• Frame Size

- Line Load
- <u>Duration</u>

Most of the settings for Latency are identical to the ones described above in the *Throughput* section. Please see the detailed descriptions in that section in addition to the Latency-specific information provided here.

Only run steps where other test passed

Allows you to select the other test that must have passed. It is possible to choose between: **Throughput**, **Frame Loss**, and **Throughput and Frame Loss**.

In addition, you can specify a tolerance level (utilization multiplier).

When 'Only run steps where other test passed' is selected, all other settings are forced identical for the Frame Loss and Latency tests. 'Only run steps where other test passed' is enabled in case of 'Switch/Router test' or 'Single ended network test'.

NOTE If duration 'Repeats' is set to 0 (zero), the test will run a single time. If it is set to 1, the test will run two times (repeated once).

6.8.2.6 Burst

Only available if you have specified a Burst test on the 'Control' of Test Setup screen.

Touching the **Burst** button in the navigation area will display the screen shown below.

			Application Se	lector			
Control	Throughput a	nd frame loss	Latency		Burst	Advanced	
Frame Size (I	Bytes) OStepped	Constant	Frames per	Burst (Burst no frame los num burst siz	Length) ss ze	Stepped 💌	
64	128	256	Auto se	arch	Start burst Siz	ze: 100	?
512	768	1024	Mode:	Smart	End burst size	2000	
1280	1518	1582	Resolution:	0.1 %	Step burst siz	ze: 100	
Duration	10 s	Repeats: 0					×
🔀 RFC 2	2544	SETUP	<u>TEST</u>	RESULT	1	V 💽 16 53	

This screen allows you to configure the following parameters related to an RFC 2544 Burst test:

- Frame Size
- Frames per burst (burst length)
- Duration

Frame Size and *Duration* are identical to the ones described above in the *Throughput* section. Please see the detailed descriptions in that section in addition to the Burst-specific information provided here.

Frames per Burst The number of frames per burst can either be varied (selecting **Stepped** in the drop-down menu) or constant (selecting **Constant**).

Stepped works like *Stepped* for frame sizes, i.e. the test starts with **Start burst Size** and in intervals of **Step burst size** increases or decreases to **End burst size**.

Constant allows you to specify a *Start burst size*.

Stop on no frame loss at maximum burst size

If selected, the burst test stops on no frame loss at maximum burst size.

Auto search

If selected, the burst length is searched automatically. Select the search method from **Mode**. Select the search resolution from **0.1** %, **1.0** %, or **10.0** %.

The check boxes are enabled except when selecting 'End to End network test' on Control screen.

If duration 'Repeats' is set to 0 (zero), the test will run a single time. If it is set to 1, the test will run two times (repeated once).

6.8.2.7 Advanced

Touching the **Advanced** button in the navigation area will display the screen shown below.

This screen allows you to specify various advanced settings for the RFC 2544 test(s).

- Pretest Options
- End to End Test (master side)
- <u>Miscellaneous</u>
- <u>Throughput Calculation Layer Selection</u>
- <u>Throughput Type</u>

Pretest Options Transmit learning frames

When this option is enabled, the RFC 2544 test will send out a number of 'learning frames' before the first test-step starts on each port. This happens to train network equipment, so that initial latency results will not be invalid.

End to End Test (master side) In One-Way test, transmit frames from This parameter defines the direction of the frames when transmitted during an End to End test with the One-Way setting enabled. Available directions are: Local or Remote.

Use local source addresses for destination on remote side

When this function is enabled, the Network Master does not use the IP or MAC addresses for differentiating frames during the RFC 2544 test. An exception is End to End test control, but routing equipment in the network may need the addresses to be set up correctly. To limit the amount of needed setups on the Remote side, this setting can be enabled to transfer the source address setup from the Local using it as destination on the Remote. However, the source addresses must still be correctly setup on the remote in order to make the End to End test work.

Store test results on remote side

When this function is enabled, test results will be stored on the remote instrument.

Miscellaneous Include addresses in frame filter on receiver

The receiver uses a filter to determine which frames should be counted in the results. When this function is enabled, the receiver will use the MAC addresses of each incoming frame in addition to the 'filter key' used by default.

Measure jitter by means of latency test

When selected the Latency Test will measure jitter instead of latency.

Accumulate repeated steps

When this function is enabled, repeated steps are accumulated into one result line.

ThroughputSelect the layer on which the throughput calculation is done. As described inCalculation Layerthe Throughput Calculation section there are 6 different layers:Selection

- Utilization layer throughput
- Physical layer throughput (without preamble)
- Physical layer throughput
- Link layer throughput
- Network layer throughput
- Data layer throughput

Throughput Type Select whether to register **Average throughput** or **Maximum throughput**.

6.8.3 Test Results

Graphical presentation The results of the performed RFC 2544 tests can be presented in either tabular form or as graphical representations. The graphical presentation mode provides an overview of the results and the progress of the test.

On the test-specific result screen, you switch between the two modes by using the **Graph** and **Table** buttons.

6.8.3.1 Summary

When you go to the test results of the Ethernet RFC 2544 application, the following screen is displayed.

	Result File	Browser	
2014-06-13 10:26:07	00:19:30		-00:07:53
Summary	Frame loss	Latency	Statistics 📕 🚺
Test Mode		Single ended network test	
Test	Status		2
Throughput		Completed	
Frame Loss		Running	
Latency		Configured / Not Started	
Throughput and Frame Loss		Not Configured	
Burst		Not Configured	
			×
RFC 2544 SET	UP TEST	T <u>RESULT</u> 💾 🗃 🐬	× ≱ V 📑 10:45

This screen presents the current status of the test(s) (**Configured / Not Started**, **Running**, **Completed** or **Not Configured**). Touching the status button for a specific test will display the relevant screen with detailed results information.

6.8.3.2 Throughput

Touching the **Throughput** button in the navigation area will display the screen shown below.

Port 1 Port 2			Re	Result File Browser Remote 1		Remote 2			
2014-06-13 10:26:07					0	00:19:50		-00:07:40	
Summary Throughput			Frame	Frame loss		Statistics			
	Port 2 T Port 2 I	Tx Rx						Graph	
	Rep			Frame rate			d (Mbps) d (Mbps)	Util. (%) /Thrp. (Mbps)	2
		1	205	1586.29	768	10000.	00000 / 0.07644		
	0	1	0					0.0000 / 0.	E,
	0	2	205	1427.66	768	9000.	00000 / 0.07644		
			0					0.0000 / 0.	
			205	1269.03	768	8000.	00000 / 0.07644		
		205 1110	0					0.0000 / 0.	
			1110.406 k	768	7000.00000 / 0.07644			X	
		4	0					0.0000 / 0.	
	RFC 2544			SETUP	TEST <u>RESUL</u>	.т 🔐 🗃	🦈 🔉 V 🗾 10 45		

This screen presents the results from the Throughput test.

The most important columns of the tables are the varied main parameters *Frame size* and *Throughput* and the performance parameter *Frames lost*.

The order of the tables will vary depending on the test mode and the relation of the ports.

Test Mode	Port 1	Port 2
Switch/Router test	Port 1 Tx Port 2 Rx	Port 2 Tx Port 1 Rx
End to End test		
Router latency test	Port 1 Tx Port 1 By	Port 2 Tx Port 2 Bx
Single ended network test		

6.8.3.3 Frame Loss

Only available if you have specified a Frame Loss test on the 'Control' of Test Setup screen.

Touching the **Frame loss** button in the navigation area will display the screen shown below.

Port 1 Port 2			Re	sult File Browser					
2014	-06-1	13 10:26	:07		,			2014-06-13 10:56:57	
Sum	nmary			hput	Frame	e loss	Latency	Entry Statistics	
Po	ort 1 T ort 1 F	Гх Rx						Graph	0
				Frame rate		Nom. Line lo /Act. Line lo	ad (Mbps) ad (Mbps)	Thrp. (Mbps) 🔺 /Util. (%)	0
	F	26	7.931472 M	793.147 k	768	5000.000	000 / 4999.99948		
	5	26	0					0.0000 / 0.	E,
	5		6.345177 M	634.517 k	768	4000.000	000 / 4000.00305		
		21	0					0.0000 / 0.	
	F		4.758883 M	475.888 k	768	3000.000	000 / 3000.00110		
	5	28	0					0.0000 / 0.	
	Ē		3.172588 M	317.258 k	768	2000.000	000 / 1999.99995		X
	5	29	0					0.0000 / 0.	
	•							•	
	ſ	RF	C 2544		SETUP	test <u>RESU</u>	LT 🔐 🔿	🔿 🎗 V 🗾 10:58	

This screen presents the results from the Frame Loss test.

The most important columns of the tables are the varied main parameters *Frame size* and *Throughput* and the performance parameter *Loss rate*.

The order of the tables will vary depending on the test mode and the relation of the ports. Refer to the table in "Throughput" subsection of "Test Results".

6.8.3.4 Throughput and Frame Loss

Touching the **Throughput and frame loss** button in the navigation area will display the screen shown below.

This screen presents the results from the Throughput and Frame Loss test.

The most important columns of the tables are the varied main parameters *Frame size* and *Throughput* and the performance parameters *Frames lost* and *Loss rate*.

The order of the tables will vary depending on the test mode and the relation of the ports. Refer to the table in "Throughput" subsection of "Test Results".

6.8.3.5 Latency

Touching the **Latency** button in the navigation area will display the screen shown below.

Port 1 Port 2					Result File	Browser						
20)14-06-	13 10:2	6:07				20	014-06-13 10:56:57				
S	ummary		Throughput		Frame loss		atency	Statistics 📕				
Port 1 Tx Port 1 Rx												
	Rep				Frame rate	Nom. Liı /Act. Lir	ne load (Mbps) ne load (Mbps)	Util. (%) /Thrp. (Mbps)	2			
	-		256	45289	4.528 k		10.00000 / 10.00003					
	5	6		0				0.0000 / 0.0	¥,			
									×			
								Þ				
		🛃 R	FC 2544	SETU	IP TES	T <u>RESUL</u>	[📑 🕂 🙀	V 🗾 10:58				

This screen presents the results from the Latency test.

The most important columns of the tables are the varied main parameters *Frame size* and *Throughput* and the performance parameters *Min*, *Avg* and *Max* latency stated in micro seconds.

The order of the tables will vary depending on the test mode and the relation of the ports. Refer to the table in "Throughput" subsection of "Test Results".

6.8.3.6 Burst

NOT

Result File Browse Port 1 2014-06-13 11:24 00:10:2 Summary Statistics Throughput / f.loss Burst Port 2 Tx Graph Port 1 R 100 / 256 1000 0 1 0 1000 Ĕ, 200 / 256 2000 0 2 0 2000 300/256 2917 0 3 0 2917 400 / 256 3552 X 0 4 0 3552 500 / 256 3902 RFC 2544 SETUP TEST RESULT 🕂 🗃 🛪 🕅 V 📑 12 52

Touching the **Burst** button in the navigation area will display the screen shown below.

This screen presents the results from the Burst test.

The most important columns of the tables are the varied main parameters *Frame size* and *Burst size* (number of frames transmitted at 100% line load) and the performance parameter *Frames lost*.

The order of the tables will vary depending on the test mode and the relation of the ports. Refer to the table in "Throughput" subsection of "Test Results".

6.8.3.7 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

6.8.4 Throughput Calculation

Throughput may be calculated on 6 different layers. Each calculation is done on a one second base. It is possible either to register the maximum throughput (actually showing only the second with the highest throughput), or to register an *average throughput per second* taken over a selected part of the test period.

The calculation depends on the setting of the transmitted frame contents. Even in cases where the transmitter is not used, the calculation will be based on this setting.

The part of the test from which the average throughput is calculated, is selected in a way to avoid influence from latency and missing frames. The drawing below illustrates this.

The **Tx** graph shows the transmitted periods, and the **Rx** graph shows the received periods. Due to latency the receiver will first see the transmitted frames some time later than when transmitter actually sent the frames (the L-period). This is also why the receiver may have more periods than the transmitter, in order to await delayed frames. However the receiver will maximum wait for 10 extra periods (seconds) before it times out, as frames may actually physically be lost somewhere in the network.

The average calculation is triggered when the receiver actually sees the first frame. The frames in this first I-period are ignored. Then the average calculation is started and runs over the next duration-2 A-periods. Frames in the last I-period are also ignored. Frames in the remaining S-periods have no influence on the average calculation.
6.9 SAT 1564

Service Activation Test is an out-of-service test used to assess the proper configuration and performance of Ethernet services. The test methodology, which is described in the ITU-T recommendation Y.1564, applies to point-to-point and point-to-multipoint connectivity in the Ethernet layer and to the network portions that provide (or contribute to) the provisioning of such services.

The recommendation also defines the terms used in the Network Master screens related to Service Activation Test.

ITU-T Y.1564 is designed around three key objectives:

- To serve as a network *service level agreement* (SLA) validation tool, ensuring that a service meets its guaranteed performance settings in a controlled test time.
- To ensure that all services carried by the network meet their SLA objectives at their maximum committed rate, proving that under maximum load network devices and paths can support all the traffic as designed.
- To perform medium- and long-term service testing, confirming that network elements can properly carry all services while under stress during a soaking period.

6.9.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.9.2 Test Setup

6.9.2.1 Control

When you go to the test setup of the SAT 1564 application, the following screen is displayed.

	Ар	plication Selector			
Control			Services		
Test ModeOne-V	Vay Test		Round-Trip Test	:	\bigcirc
•□		0			• ?
_End to End Test Setup			Bit Rate Real	m	
Direction:	Local->Remote Sync. Mod	🖊 Remote->Local de:	Informati	on rate	Ĕ,
Symmetrical Symmetrical Use local SRC IP as DST IF	Pre-test sync.		Utilized I	ine rate	
_ Service Configuration Tests _			Service Perf	ormance Test	~
Complete despite SAC via	blation		Duration: 15 minutes	00:01:00	×
SAT (Y.1564)	SETUP	<u>TEST</u> RESU	лат 🔐 🗃	🛪 🎖 V 🗾 17:52	

This screen allows you to configure the test mode and other general parameters related to a <u>Service Activation Test</u>.

Test Mode

Use the radio buttons to select the relevant test mode.

One-Way Test

In this test mode, two Network Master units will work together performing the test. When the test is started on the local side, the unit will try to contact the remote side, using the Destination IP and MAC address (or use ARP if selected) for the first enabled service. If the remote side receives the communication on a port with a matching Source address, the test will begin.

The remote side Network Master must have "Accept Network Master Configuration frames" enabled, in order to detect the communication.

Frames from Service 1 on the local side must reach Service 1 on the remote side and vice versa. This applies to all services.

When the End to End test is started, a popup will appear on the remote side, telling that the unit is being remotely controlled and allowing the user to break the connection, if required. The popup will disappear when the test is completed or stopped on the local side.

When the End to End test is completed, the test results are transferred from the remote side to the local side.

Round-Trip Test

This test mode is used when testing network by reflecting traffic back to the instrument. This requires a device to reflect the traffic back, for instance a second Network Master.

A remote side Network Master in Reflector mode must have Swap IP address and Swap Ports on UDP and TCP frames enabled.

End to End Test Setup This setup is enabled when **One-Way Test** is selected.

Direction

Use the checkboxes to specify which directions to test. It can be either **Local->Remote** or **Remote->Local**, or both.

Line

Use the drop-down menu to select how the service attributes for the directions are set up.

• Symmetrical: The same service attributes are used for both directions.

• Asymmetrical: Service attributes are set up for each direction.

Test Sync. Mode

Use the drop-down menu to select the method for synchronization of the two instruments performing the test. Synchronization is required for correct measurement of FTD and FDV in End to End Test mode.

- Select **GPS** if external GPS receivers are available at both the local and the remote site. This gives the most accurate measurements.
- Select Pre-test sync. if GPS is not available for both instruments. In this mode, synchronization is obtained using proprietary protocol prior to the first step of the Service Configuration Test.

D.B.	0	100	
1.4	U		

External GPS sensor is available from Anritsu (part no. G0325A).

Use local SRC IP as DST IP on remote side

Select this to transfer the local source IP address to the remote side, to be used as destination IP address. If ARP is enabled locally, it will also be enabled on the remote side.

Bit Rate Realm Use the radio buttons to specify which bit realm to operate in.

Information rate

The bit rate of frames starting with the first MAC address bit and ending with the last FCS bit.

Utilized line rate

The bit rate of the Ethernet line, including the bits for:

- The minimum inter frame gap
- Preamble
- Start of frame delimiter
- Frame starting with the first MAC address bit and ending with the last FCS bit.

Service Configuration Tests General setting for the configuration test.

Complete despite SAC violation

Select this checkbox to allow the configuration test to be completed despite any detected SAC violations. If not selected, the configuration test will stop when the first SAC violation is detected.

Service Performance Test

General setting for the performance test.

Duration

Allows you to set the duration period of the performance test. Either select one of the predefined values in the drop-down menu or use the field to specify a custom period.

6.9.2.2 Services

Touching the **Services** button in the navigation area will launch the screen shown below.

If the End to End test setup on the 'Control' screen has been set to asymmetrical service attributes setups, two Services buttons are displayed instead of one: Services L->R button and Services R->L button.

This screen allows you to configure up to eight services being tested in the current <u>Service Activation Test</u>. For each service, you can:

- Enable/Disable the service
- <u>Set up the profile</u>
- Set up the bandwidth
- <u>Set up the service acceptance criteria (thresholds)</u>
- <u>Set up the color aware</u>
- Set up the frame size configuration

Enable/Disable service Select the services that are to be tested. Up to 8 services can be specified, either by enabling already defined services or by defining new ones. Use the stream slide-out to select the relevant services. The stream slide-out is displayed via the tab in the top left-hand corner of the setup area.

Use the **Enabled** checkbox to enable/disable the service specified in the **Service** field.

To define a new service, select the relevant stream, specify a name in the **Service** field and then configure the service using the tab pages.

Profile tab

The **Profile** tab page contains the following parameters:

Profile

In case of Round-Trip Test mode, the drop-down menu at the top allows you to select the service profile as either **Data**, **Video** or **Voice**.

Encoding

Open the drop-down menu to select the relevant encoding type. The available values depend on the selected profile type.

Number of channels

Specify the number of channels.

CIR

Allows you to specify the Committed Information Rate (CIR). When set to zero, the CIR test is excluded. If color awareness is enabled (see below), this is the bit rate for green frames.

Steps Step duration

Allows you to specify the test step duration. Valid setting is from 1 to 60 seconds.

Number of steps

Allows you to specify the number of steps in the CIR test. Valid setting is from 1 to 10 steps.

Slope

Use the radio buttons to select an *ascending* or *descending* test slope for the CIR test.

- If the *descending* test slope is selected in *round-trip* test mode, all remaining CIR steps are skipped when a CIR step passes.
- In one-way test mode, all CIR steps are always performed.

Bandwidth tab

The **Bandwidth** tab page contains the following parameters:

CIR

Allows you to specify the Committed Information Rate (CIR). When set to zero, the CIR test is excluded. If color awareness is enabled (see below), this is the bit rate for green frames.

EIR

Allows you to specify the Excess Information Rate (EIR). When set to zero, the EIR test is excluded. If color awareness is enabled (see below), this is the bit rate for yellow frames.

CIR plus EIR for a service must be greater than zero.

Traffic policing

Select this checkbox to enable the traffic policing test. When enabled, you can specify a margin on the **Service Acceptance Criteria** tab page and use that margin for pass/fail evaluation during the service configuration test. The test will fail if the throughput is greater than CIR + EIR + Margin.

CBS

Allows you to specify the Committed Burst Size (CBS) in bytes. When set to zero, the CBS test is excluded. If color awareness is enabled (see below), this is the burst size for green frames.

The CBS test can only be executed if CIR is also greater than zero. Furthermore, it must be possible to send at least twice the number of CBS bytes with CIR rate within the step duration.

EBS

Allows you to specify the Excess Burst Size (EBS) in bytes. When set to zero, the EBS test is excluded. If color awareness is enabled (see below), this is the burst size for yellow frames.

NOTE

The EBS test can only be executed if EIR is greater than zero. If CIR is greater than zero, the EBS test also requires that CBS is greater than zero. Furthermore, it must be possible to send at least twice the number of EBS bytes with EIR rate within the step duration.

Service Acceptance Criteria tab

The **Service Acceptance Criteria** tab page contains the following parameters:

		Appli	ication Selector			- -
	Control			Services		
1	✓ Enabled	Servic	e :	Co	ру То 🗸	\bigcirc
	Profile Bandwidth Service Acce	ptance Criteria Colo	r Aware Frame Size			
	Traffic policing margin:		0.0	0	Mbps	?
	Frame transfer delay:		0.50	00	ms	E.
	Frame delay variation:		0.0	50	ms	
	Frame loss rate:		0.00E	+00		
	AVAIL:		10	0	%	×
	SAT (Y.1564)	SETUP	TEST RESULT	📑 🐼 🖘 🕅	V 📑 17:59	

Traffic policing margin

Only active when the traffic policing test is enabled. Allows you to specify a margin for the pass/fail evaluation during the service configuration test. The test will fail if the throughput is greater than CIR + EIR + Margin.

Frame transfer delay / RT Frame transfer delay

Allows you to specify the maximum acceptable transfer delay in ms (mean).

Frame delay variation / RT Frame delay variatio

Allows you to specify the maximum acceptable frame transfer deviation in ms (mean).

Frame loss rate

Allows you to specify the maximum acceptable frame loss rate.

AVAIL

Allows you to specify the minimum acceptable availability percentage.

Color Aware tab

The **Color Aware** tab page contains the following parameters:

			Application Se	elector				
	Control				Services			
1	Enabled	Se	ervice :			Сору То	•	\bigcirc
	Profile Bandwidth Service	Acceptance Criteria	Color Aware	Frame Size				
	Enabled		-					?
	O PCP			IP D	ISCP			E
	DSCP	Green:	0		Yellow:	0		
								×
	SAT (Y.1564)	SETUP	<u>test</u>	RESULT	🔐 📑	K 🖹 V 🚺 :	17 59	

Select the **Enabled** checkbox to enable color awareness. You can then choose the color method (**IP DSCP** or **PCP**), as well as the priority values to mark the green and yellow frames with.

- Choose IP DSCP to use IP priority coloring.
- Choose **PCP** to use VLAN priority coloring. This requires that VLAN is enabled.

With color awareness enabled, the test will include results for green and yellow frames for the EIR, Traffic Policing and the EBS tests.

With color awareness, the transmitted frame rate is 100% CIR green-marked frames plus 125% EIR yellow-marked frames. If EIR is less than 20% of CIR, the transmit rate is 100% CIR green-marked frames plus 25% CIR yellow-marked frames plus 100% EIR yellow-marked frames. Without color awareness, the transmit rate is 100% CIR + 125% EIR. If EIR is less than 20% of CIR, the transmit rate is 125% CIR + 100% EIR.

Frame Size tab

The contents of the **Frame Size** tab page depends on your choice of mode. Frame size has two modes: *Constant* and *EMIX*.

Constant

Allows you to either select a constant frame size from one of several predefined sizes, or to define a custom frame size with MTU or User defined setting.

		Application Selector		
	Control		Services	
1	✓ Enabled	Service :	Сору То 🗸	\bigcirc
	Profile Bandwidth Service Acceptan	ce Criteria Color Aware Frame Size		
	Constant	ЕМІХ		?
	64	128	256	ĕ
	512	0 1024	_ 1280	
	_ 1518		OUser defined	
	MTU size:	1518	bytes	X
	User defined size:	512	bytes	
	SAT (Y.1564)	SETUP <u>TEST</u> RESULT	🔐 🍽 🦘 🕅 V 📑 17:59	

EMIX

Allows you to set up a repeating frame size pattern. The pattern must consist of at least 1 frame size and at most 16.

		Applicati	on Selector	J		
	Control			Services		
1	✓ Enabled	Service :			Сору То 👻	\bigcirc
	Profile Bandwidth Service Accepta	nce Criteria Color Av	vare Frame Size			
	Constant	(?
	EMIX sequence			abceg		ĕ
	a: 64	b: 128		c: 256		
	d: 512	e: 1024		f: 1280		
	g: 1518	h: MTU		u: User Defined		
	MTU size:	151	8	bytes		×
	User defined size:	512	2	bytes		
	sat (Y.1564)	SETUP <u>TE</u>	<u>ST</u> RESULT	💾 📑 🚿	¥ V <u>№</u> 18:31	

Frame size is protocol headers and payload combined. Frame size does not include preamble and interframe gap.

	Application Selector		
Control		Services	
1 Enabled	EMIX sequence	× ° -	
Profile Bandwidt		abceg Default	
Constant			
a: 64	b: 128	c: 256	
a: 64 d: 512	e: 1024	f: 1280	
d: 512 g: 1518	h: MTU	u: user defined	
g: 1518		Cancel Ok	
MTU size:			X
User defined size:	512	bytes	
SAT (Y.1564)	SETUP <u>TEST</u> RESULT	🔐 🍽 🔿 🎖 V 🗾 18:32	

6.9.3 Test Results

Item status Lamp Each result item has a colored Lamp indicating the status for this item and its sub items:

Green

The item and all its sub items are passing or have passed the Service Acceptance Criteria.

Yellow

The GPS synchronization has been lost for a longer period, typically one hour or more. The results are shown, but you should be aware of the possibly limited precision of the FTD results.

Red

The items and one or more of its sub items have failed the Service Acceptance Criteria.

Gray

Results for the item are pending.

GPS status Lamp

During a One-Way test, status for the GPS time synchronization is displayed at the top of the screen with colored Lamps - one Lamp for the local side and one for the remote side.

Green

GPS synchronization is OK.

Yellow

GPS synchronization has been lost for too long a time. FTD and FDV results could be compromised.

6.9.3.1 Summary

When you go to the test results of the Service Activation Test, the following screen is displayed.

	Resu	lt File Br	owser			
2014-06-07 18:02:10					2014-06-07 18:02:2	5
Summary Configura	tion Test		Performance	Test	Statistics	
Configuration Test			Perf	formance Test	•	
Service R -> L L ->	≻ R		Service		L -> R	
Service 1			Service 1	Ĭ		
h. 46						ĕ
						×
						\sum
SAT (Y.1564)	SETUP	TEST	RESULT	🕂 🗗	🗙 🖹 🗸 🗾 18:02	

This screen presents a summary of the results of the Service Activation Test. Selecting the result button for a specific service in either the **Configuration Test** or **Performance Test** result panel will display the relevant screen with detailed results information.

6.9.3.2 Configuration Test

Touching the **Configuration Test** button in the navigation area will display the screen shown below.

This screen presents the detailed Configuration Test results for a specific service. Use the drop-down menu at the top of the screen to select which service to view.

The results are presented in a table and are related to a specific CIR% (CIR 25.00%, CIR 50.00%, CIR 75.00%, and CIR 100%). Select the relevant CIR% either by selecting the corresponding bar in the bar graph or by using the CIR drop-down menu.

Touching a cell in table displays Minimum, Maximum, Mean value and the Threshold, at bottom of screen.

Test results Select a cell in the results table to see the details. The following information is presented:

IR / ULR

Shows the minimum, mean and maximum bit rate in Mbps. Depending on the test setup, the bit rate is either Information Rate (IR) or Utilized Line Rate (ULR).

FL

Shows the number of lost frames and the frame loss ratio. The frame loss ratio is frames lost divided by frames transmitted.

FTD / RT FTD

Shows the minimum, mean, maximum and current Frame Transfer Delay in milliseconds. Depending on the test setup, the result is either one-way delay or round-trip delay.

FDV / RT FDV

Shows the minimum, mean, maximum and current Frame Delay Variation in milliseconds. Depending on the test setup, the result is either one-way or round-trip.

6.9.3.3 Performance Test

Selecting the **Performance Test** button in the navigation area will display the screen shown below.

R -> L	L -> R	Result	File Browser			
2014-06-07 18:02:10				2	014-06-07 18:02:25	
Summary	Configurati	on Test	Performance	Test	Statistics 📕	
Service	IR (Mbps)	FL	FTD (ms)	FDV (ms)	Avail (%)	
Service 1	N/A	N/A	N/A	N/A	N/A	
Touch on each call to so	a the details					?
louch on each ceil to see						¥.
SAT (Y.156	4)	SETUP T	est <u>RESULT</u>	💾 📑 🖘	V 🗾 18:02	

This screen presents the detailed Performance Test results.

Test results Select a cell in the results table to see the details. The following information is presented:

IR

Shows the minimum, mean and maximum bit rate in Mbps. Depending on the test setup, the bit rate is either Information Rate (IR).

FL

Shows the number of lost frames and the frame loss ratio. The frame loss ratio is frames lost divided by frames transmitted.

FTD

Shows the minimum, mean, maximum and current Frame Transfer Delay in milliseconds. Depending on the test setup, the result is either one-way delay or round-trip delay.

FDV

Shows the minimum, mean, maximum and current Frame Delay Variation in milliseconds. Depending on the test setup, the result is either one-way or round-trip.

Avail

Shows Availability, which is the percentage of one-second in intervals that are categorized as available. An available second occurs when the line is in the available state. The available state begins at the onset of 10 consecutive non-SES_{eth} outcomes. A SES_{eth} is defined as a second with a frame loss rate of 0.5 or more. See Y.1563 clause 9.

6.9.3.4 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

6.10 Traceroute

The Traceroute test is used to determine the route taken by packets in an IP network. The intermediate routers traversed are identified by the sending of a sequence of ICMP Ping packets to the desired destination, each packet with a too low Time-to-Live (TTL) or *hop limit* so that it terminates in one of the routers and makes the router return an error message. Routers decrement the TTL and discard a package when the TTL value has reached zero.

Traceroute works by gradually increasing the TTL value for each packet, starting at "1". The first set of packets terminates at the first router, the second set at the second router, and so on until a ping reply is received from the destination. This is used to build a list of the hosts that the packets must pass through to reach the intended destination.

The test will send regular ICMP type 11 Ping packets to each host that is detected in this way, and display the resulting RTT (Round Trip Times).

6.10.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the Ethernet interface are described in a separate section:

• Ethernet Setup and Status

For applications also including an OTN interface, you can find a description of the setup options and status information for OTN in the following section:

• OTN Setup and Status

Please refer to the sections relevant for your current port setup requirements.

6.10.2 Test Setup

When you go to the test setup of the Ethernet Traceroute test, the following screen is displayed.

Port 1	Application Selector	
T of D or Vie		
Number of attempts:	3	
Max number of hops:	30)
Ping each hosts:	3	times
_Threshold:		
Timeout:	500	ms
		×
🛄 🗎 Traceroute	SETUP TEST RESULT	📑 🗃 🛪 🎖 V 🗾 18 04

This screen allows you to configure the parameters related to a <u>Traceroute</u> test.

Test Duration Number of attempts

Used to specify the maximum number of times that Ping packets with each TTL value are transmitted. If no ICMP type 11 or ping reply is received after this number of attempts, the test will move on to a higher TTL value.

Max number of hops

Used to specify the maximum number of hops performed in the test. The test will gradually increment the TTL value until a regular ping reply is received. If no ping reply is received before this number of hops, the test will stop.

Ping each hosts

Used to specify the number of times each host is pinged to determine the RTT. For each hop that responds with ICMP 11 type packets, and for the desired destination, this number of Ping packets is sent.

Threshold Timeout

Used to specify the timeout limit for Ping packets sent by the test.

6.10.3 Test Results

6.10.3.1 Summary

When you go to the test results of the Ethernet Traceroute test, the following screen is displayed.

	Port	1		Result File Brow	vser				
2014-0	5-07 18	3:10:16					2014-06-07 1	8:10:28	
Summa	ry						Statistics		
Нор		Host		Min Ping (ms)	Max F	Ping (ms)	Avg Ping (ms)	Timec	
	1	172.16.84.1		0.40	67	0.4245	0.4144		
	2	172.16.4.2		0.20	49	0.2735	0.2321	- ?	
	3	172.16.1.254		0.22	72	0.2829	0.2520		
	4	<timeout></timeout>				-			
	5	<timeout></timeout>			-	-	-	🗐	7
	6	<timeout></timeout>				-	-		
	7	<timeout></timeout>			-	-	-		
	8	<timeout></timeout>			-	-	-		,
		Traceroute	SETU	P TEST	RESULT	i # C	🕅 🕅 🛛 🖉	18:10	

This screen shows the status/results of a running Traceroute test, or the results of the most recently completed test.

Each row in the table represents a hop in the chain of host servers of the traceroute. For each hop/host the following information is shown:

- The IP address of the host
- The Min., Max. and Average ping RTTs
- The number of ping timeouts during the determination of the RTT

In the results table for a successfully completed test, the last row will represent the destination of the traceroute.

6.10.3.2 IEEE1588v2 Log

If **Ext. log** is selected in IEEE1588v2 screen of Ethernet Frame Setup, the **IEEE1588v2 Log** button appears in the navigation area. Refer to <u>IEEE1588v2</u> Log in BERT for the operation.

6.10.3.3 Statistics

Touching the **Statistics** button in the navigation area displays the screen providing the statistics data. Refer to <u>Statistics</u> of BERT for the operation.

7 OTN Applications

This chapter describes the graphical user interface (i.e. screens, subscreens and major dialog boxes) related to OTN-only applications. Subscreens and dialogs are described under the main screen from which they are activated/launched.

The following setting and applications are available:

- OTN Setup and Status
- <u>APS</u>
- <u>BERT</u> • <u>RTD</u>

OTN Setup and Status may also be part of the various SDH/SONET/PDH/DSn and Ethernet tests.

7.1 OTN Setup and Status

An **OTUk** button in the navigation area of the **Ports Setup** screen gives you access to the OTN setup for the transmitter and/or receiver of the currently selected port.

OTN (Optical Transport Networking) provides support for optical networking using wavelength-division multiplexing (WDM). OTN is defined in the ITU-T Recommendation G.709 as a set of Optical Network Elements (ONE) connected by optical fiber links, able to provide functionality of transport, multiplexing, switching, management, supervision and survivability of optical channels carrying client signals.

The OTUk interface uses the optical ports.

MU100010A Connector Panel

7.1.1 Transmitter Setup

7.1.1.1 Physical Setup

When the transmitter is set up with an OTUk interface, touching the Tx button in the navigation area will launch the following screen.

Port 1 Port 2 Application Selector		
Tx ← OTU2 - ODTU12(PT=20)#1 - ODTU01#1 - OPU0		
Rx → OTU2 - ODTU12(PT=20)#1 - ODTU01#1 - OPU0		\bigcirc
Transmitter SFP/SFP+ Transmission Off Normal Through OH overwrite Clock Configuration Timing source: Internal	Transmission Normal LOS Signal Level -6.27 dBm OTN LOF	• ? =
	OTU-AIS SM-BIP8 OH capture Tributary scan	×
BERT <u>SETUP</u> TEST RESULT	Transceiver	

This screen allows you to enable the optical interface of the OTN transmitter. It can also be used to inspect the current status of the selected port in Port Mode lamps.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Transmitter

SFP/SFP+ is displayed for MU100010A.

Transmission

Select the transmission mode.

• Off: OTUk frame is not transmitted.

- Normal: Transmits OTUk frames generated in the Network Master.
- **Through** (pass through mode):Transmits the received data.
- OH overwrite (pass through mode with Overhead overwrite): Overwrite the overhead of the received data to OH data generated in Transmit side.

Clock Configuration

Use the drop-down menu to select the clock source. This is fixed to **Received** when **Transmission** is set to **Through** or **OH overwrite**.

Timing source

Internal: Internal clock of the module External: The clock provided the connector GPS: The clock provided from GPS (Global Positioning System) Received: The clock generated from the received signal

7.1.1.2 OTUk Frame Setup

Touching the navigation area button which represents the transmitter's OTN layer will launch the screen shown below.

This screen allows you to configure OTUk frame of the currently selected transmitter. It can also be used to inspect the current status of the selected port in a separated screen.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

To setting up the OTU frame, touch **Mapping** button at first. Then select the relevant values for the various containers in the structure shown in the setup area, either by opening a drop-down menu or by touching a button to launch an editor dialog.

Note that the changes you make will be reflected in the text displayed in the OTUk button in the navigation area.

FollowsTo make the Port 2 transmitter follow the Port 1 transmitter (i.e. copy its
settings), touch the right-most button in the navigation area and select the
Tx1 in the drop-down menu. The default setting is None. Note that the Port 1
transmitter cannot follow the Port 2 transmitter.

Mapping

Touch the **Mapping** button and use the launched dialog box to define the OTUk frame mapping. The following settings are available:

• Output Signal

- <u>Client Signal</u>
- <u>Multiplexing 1</u>
 Multiplexing 2

See a description of the setting options in the *Mapping Dialog* section below.

FEC Control

Use the drop-down menu to select whether or not to transmit FEC (Forward Error Correction) data.

- **No FEC**: OTUk data is transmitted without FEC encoding.
- **RS(255,239)**: OTUk data is transmitted with FEC encoding. RS(255,239) code is defined in ITU-T Rec. G.709.

TTI Encoding

Use the drop-down menu to select TTI encoding method.

- **ITU-T**: Corresponding to ITU-T Rec. G.709.
- **ANSI**: All TTI 64 bytes can be edited as the operator specification.

он

Touch an **OH** button to launch the corresponding **Overhead** dialog box. Depending on whether you have selected multiplexing or not in the frame mapping, there will be one or more overheads to configure.

The dialog box is described in detail in the *Overhead Dialog* section below.

Dummy CH

Only displayed when the frame mapping is set to multiplexing. Select the payload of the dummy channel from the drop-down menu.

- **Copy**: Transmit the copy of the main Tributary Port (TP) data to the dummy Tributary Port (TP).
- **Unused**: Dummy ODUj data which are generated separately from the Main ODUj data are embedded into the remained TPs.

TP

Only displayed when the frame mapping is set to multiplexing. Touch the **TP** button and use the launched dialog box to set the number of TP or TS. The selected TP number is showed on the button.

The dialog box is described in the *TP/TS Dialog* section.

GFP-T

Only displayed when the client signal is GbE. Touch the **GFP-T** button to launch a dialog box where you can to select CSF Replacement.

The dialog box is described in the *GFP-T Dialog* section.

Configure

Only displayed when the client signal is PRBS. Touch the **Configure** button to launch a dialog box where you can select pattern type.

• **PRBS9** to **PRBS31**: Pseudo-random bit sequence. The number indicates the bit length of sequence.

For example, bit length of PRBS9 is 2^9 -1=511. **PRBS Pattern Inversion** is enabled.

• User [32] bit, User [2048] bit: 32 bits or 2048 bits length pattern. The field which shows bit length is enabled. Touch the field to launch the dialog box to define the bit pattern. Refer to <u>The User Pattern Editor</u>.

7.1.1.3 Mapping

Touching the **Mapping** button in the upper left-hand corner of the **Ports Setup** screen launches the dialog box shown below.

This dialog box allows you to define OTUk frame mapping.

Output Signal

Defines the bit rate the output from the Tx port.

- **OTU1**: 2.666 Gbit/s
- **OTU1e**: 11.049 Gbit/s
- OTU2: 10.709 Gbit/s
- OTU2e: 11.096 Gbit/s
- OTU1f: 11.270 Gbit/s
- OTU2f: 11.318 Gbit/s

Client Signal

Defines the Client Signal. The available values change depending on the output signal type.

- **PRBS**: PRBS
- **GbE**: Giga bit Ethernet (1250 Mbit/s)
- 10GbE: 10 Giga bit Ethernet (10312.5 Mbit/s)
- STM64(Async): Synchronous Transport Module-64 (9953.28 Mbit/s)
- **STM16(Async)**: Synchronous Transport Module-16 (2488.32 Mbit/s)
- STM4: Synchronous Transport Module-4 (622.08 Mbit/s)
- STM1: Synchronous Transport Module-1 (155.52 Mbit/s)

GbE and **Ethernet** appear if the application is Ethernet on OTN. **STM64(Async)** through **STM1** appear if the application is SDH/SONET on OTN.

Multiplexing 1

Applicable when there are two or more levels of multiplexing. Defines into which higher order the second level ODU is mapped.

- None
- **ODTU2.1** : One 1.25G Tributary Slot (TS) can be selected.
- **ODTU12 (PT=20)** : Supports 2.5G Tributary Slot (TS).
- ODTU12 (PT=21) : Supports 1.25G Tributary Slot (TS).
- **ODTU2.ts** : Supports ODUflex. One to eight TSs can be selected.

Multiplexing 2

Applicable when there are three levels of multiplexing. Defines into which higher order ODU is multiplexed.

- None
- **ODTU01**

7.1.1.4 Overhead

Touching an **OH** button in the setup area of the **Ports Setup** screen launches a dialog box similar to the one shown below.

	Port 1			Port 2	2		Арр	olicatio	n Sele	ctor								
Тх					0	TU2,	ODI	J2/O	PU2	Ove	erhe	ad				્	X	
Rx			F/	٩S			MFAS		SM		GC	C0	R	ES			•	
Mapping	F6	F6	F6	28	28	28		Π		00	00	00	00	00			ma	
	RI	ES	P&T	T/A		тсм6			TCM5			TCM4		FTFL				0
	00	00			Π		01	Π		01	Π		01	FTFL			Bn	
		тсмз			TCM2			TCM1			PM		E	ХР				F
	Π		01	Π		01	Π		01	Π		01	00	00				É
Tx- C	GC	CC1	GC	C2		APS	/PCC				RE	ES			PSI			
1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	20			
	PSI[0]	0x2	20 OD	J multi	iplex s	tructu	re											X
	Defa	ult	Арр	oly									[Canc	el	Ok		
	BERT					SET	JP	TES	т	RESU	LT			(🤿 🛛	× V	N	18 23	

This dialog box presents detailed information about the overhead and allows you to configure it. Blue fields are OTU overhead. Green fields except FAS and MFAS are ODU overhead. Orange fields are OPU overhead.

The actual layout of the dialog box depends on which overhead you are configuring. The description below provides a general description of the OTN overhead.

The overhead consists of the following parameters:

- FAS, which is the signal for the frame alignment.
- MFAS, which is the signal for the multiframe alignment.
- <u>SM</u>, which shows the Signal Monitoring.
- <u>GCC0-GCC2</u>, which shows the General Communication Channel.
- RES, which is the reserved for future international standardization.
- <u>TCM1-TCM6</u>, which shows the Tandem Connection Monitoring.
- FTFL, which shows the fault location channel and fault location reporting channel.
- <u>PM</u>, which shows the Path Monitoring.
- EXP, which shows the bytes for experimental use.
- <u>APS/PCC</u>, which shows the Automatic Protection Switching and Protection Communication Control channel.
- PSI, which shows the Payload Structure Identifier.

relevant byte button to launch the editor dialog box.

FAS

If FAS(s) value is changed, a receiver which received the signal with changed

Default defined as: F6 F6 F6 28 28 28. To change a byte value, touch the

If FAS(s) value is changed, a receiver which received the signal with changed FAS might be able not to detect the frame alignment.

This field counts the OTU frame number. The value changes from 0 through 255 cyclically.

SM

MFAS

- SM consists of the following parameters:
 - TTI byte (Trail Trace Identifier)
 - BIP-8 byte (Bit Interleaved Parity level 8 code)
 - 3rd byte:
 - Bits 1-4: BIP violations (BEI/BIAE)
 - Bit 5: Signal fail status (BDI)
 - Bit 6: Frame alignment error (IAE)

• Bits 7-8: Reserved for future use

The TTI byte and 3rd byte can both be edited by launching the OTUk SM-TTI dialog box.

		ort 1	Port 2	App	olicatio	n Selector				
Tx				OTU2/ODU	J2/O	PU2 Ov	/erhead	1 (2)	×	
Rx		_	_	0.	TU2	SM-TTI		? X		\bigcirc
Manning		ТП			3r	d byte			mal	
Mapping			IS	NS		Bit 1-4:	BEI/BIAE	0000 💌		0
	[SAPI	JPN			Bit 5:	BDI		IBm	
		DAPI	JPN	ANRITSU NMX						~
	٢.	Operator	(3)	Edit 2bytes)		Bit 6:	IAE	0 🔻		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	L		_			Bit 7-8:	RES	00 🔽		Ē
	6									
	Ľ							Cancel Ok		
	PS									X
		efault /	apply					Cancel		
	в	ERT		<u>SETUP</u>	TES	T RES	ULT	🔋 🖻 🧇 🕅 V 📑 🗈	.8 23	

ΤΤΙ

The TTI (Trail Trace Identifier) is a 64-Byte signal that occupies one byte of the frame and is aligned with the OTUk multiframe.

- SAPI (Source Access Point Identifier)
- DAPI (Destination Access Point Identifier)
- Operator (32-Byte Operator specific)

3rd byte Bit 1-4: BEI/BIAE

Bits 1-4 show BIP violations BEI/BIAE (Backward Error Indication / Backward Incoming Alignment Error). Only **1011** shows BIAE=true.

Bits 1-4	BIP violations
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001 to 1111	0

3rd byte Bit 5: BDI

BDI (Backward Defect Indication) is set to "1" to indicate a signal fail status, otherwise it is set to "0".

3rd byte Bit 6: IAE

IAE (Incoming Alignment Error) is set to "1" to indicate a frame alignment error, otherwise it is set to "0".

3rd byte Bit 7,8: RES

These bits are reserved.

- **GCC0-GCC2** These fields are used to carry transmission management and signaling information. These bytes can be edited in hexadecimal value.
- TCM1-TCM6 Consists of the following parameters:
 - TTI byte (Trail Trace Identifier)
 - BIP-8 byte (Bit Interleaved Parity level 8 code)
 - 3rd byte:
 - Bits 1-4: BIP violations (BEI/BIAE)
 - Bit 5: Signal fail status (BDI)
 - Bits 6-8: Status (STAT)

The TTI byte and 3rd byte can both be edited by launching the **OTUk TCMn-TTI** dialog box, which is similar to the dialog box used to edit SM.

	Port 1	Port 2		Application Selector				
Тх				ODU2 TCM6-TTI	?	X_3>		\frown
Rx		ТП					-	()
			IS	NS			E	
Mapping	F6 F6	SAPI	JPN	ANRITSU NMX			mal	
	RES	DAPI	JPN	ANRITSU NMX			IRm	0
	00 00	Operator		Edit			1D11	
	тсмз		(3.	2bytes)				
	πι	3rd byte						-4
Tx - 5	GCC1	Bit 1-4:	BEI/BIAE	0000 💌		PSI		E
	00 00	Bit 5:	BDI	0		20		
		Bit 6-8:	STAT	001: in use without IAE				~
								X
	Default			Cancel Ok		Ok		
	BERT		SET	UP TEST RESULT	📔 🖸 🤿	• 📴 V 💽 19:	15	

ΤΤΙ

The TTI (Trail Trace Identifier) is a 64-Byte signal that occupies one byte of the frame and is aligned with the OTUk multiframe.

- SAPI (Source Access Point Identifier)
- DAPI (Destination Access Point Identifier)
- Operator (32-Byte Operator specific)

3rd byte Bit 1-4: BEI/BIAE

Bits 1-4 show BIP violations BEI/BIAE (Backward Error Indication / Backward Incoming Alignment Error). Only **1011** shows BIAE=true.

Bits 1-4	BIP violations
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001 to 1111	0

3rd byte Bit 5: BDI

BDI (Backward Defect Indication) is set to "1" to indicate a signal fail status, otherwise it is set to "0".

3rd byte Bit 6-8: STAT

Bits 6-8 show TCM status.

Bits 6-8	TCM status
000	no source TC
001	in use without IAE
010	in use with IAE
011	Reserved
100	Reserved
101	ODUk-LCK
110	ODUk-OCI
111	ODUk-AIS

FTFL

The FTFL message consists of two 128-byte fields. Launch the **ODUk FTFL** dialog box to edit the fields.

Both messages (Forward and Backward) consist of the following parameters:

Byte	Fault indication			
0x00	No Fault			
0x01	Signal Fail			
0x02	Signal Degrade			
0x03 to 0xFF	Reserved			

FIF (Fault indication field)

OIF (Operator identifier field)

- **CC** Country code is a three-character ISO 3166 geographic/political countrycode (G/PCC).
- **NSC** National segment code is a 1-6 character ITU carrier code (ICC).

Operator (Operator-specific field)

This field is available for operator use. Touching the button launches the *Pattern Editor*.

PM consists of the following parameters:

- TTI byte (Trail Trace Identifier)
- BIP-8 byte (Bit Interleaved Parity level 8 code)
- 3rd byte:
 - Bits 1-4: BIP violations (BEI)
 - Bit 5: Signal fail status (BDI)
 - Bits 6-8: Status (STAT)

The TTI byte and 3rd byte can both be edited by launching the **ODUk PM-TTI** dialog box, which is similar to the dialog box used to edit SM.

ΤΤΙ

The TTI (Trail Trace Identifier) is a 64-Byte signal that occupies one byte of the frame and is aligned with the OTUk multiframe.

- SAPI (Source Access Point Identifier)
- DAPI (Destination Access Point Identifier)
- Operator (32-Byte Operator specific)

3rd byte Bit 1-4: BEI

РМ

BEI (Backward Error Indication) shows the count of interleaved-bit blocks that have been detected in error by the corresponding ODUk path monitoring sink using the BIP-8 code.

Bits 1-4	shows	BIP violation	ıs.
----------	-------	----------------------	-----

Bits 1-4	BIP violations
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001 to 1111	0

3rd byte Bit 5: BDI

BDI (Backward Defect Indication) is set to "1" to indicate a signal fail status, otherwise it is set to "0".

3rd byte Bit 6-8: STAT

STAT (Path Monitoring Status) indicates the presence of a maintenance signal.

STAT	Signal type
000	Reserved
001	Normal path signal
010	Reserved
011	Reserved
100	Reserved
101	ODUk-LCK
110	ODUk-OCI
111	ODUk-AIS

APS/PCC

APS/PCC has four bytes. Requests/Status is defined for First byte. The request or status is shown in bits 1-4.

The protection type is shown in bit 5-8.

Bits 1-4	Meaning
0000	NR (No request)
0001	DNR (Do not revert)
0010	RR (Reverse request)
0011	Reserved
0100	EXER (Exercise)
0101	Reserved
0110	WT (Wait-to-restore)
0111	Reserved
1000	MS (Manual switch)
1001	Reserved
1010	SD (Signal degrade)
1011	Reserved
1100	SF (Signal fail)
1101	Reserved
1110	FS (Forced switch)
1111	Lockout

PSI

PSI means Protocol Structure Identifier. This field shows the payload type. You can either enter a new value directly in the field or select the relevant value from the **PSI[0]** drop-down menu.

PSI value	Payload type
0x01	Experimental mapping
0x02	Asynchronous CBR mapping
0x03	Bit synchronous CBR mapping
0x04	ATM mapping
0x05	GFP mapping
0x06	Virtual Concatenated signal
0x07	PCS codeword transparent Ethernet mapping: 1000BASE-X into OPU0
0x08	FC-1200 into OPU2e mapping
0x09	GFP mapping into Extended OPU2
0x0A	STM-1 mapping into OPU0
0x0B	STM-4 mapping into OPU0
0x0C	FC-100 mapping into OPU0
0x0D	FC-200 mapping into OPU1
0x0E	FC-400 mapping into OPUflex
0x0F	FC-800 mapping into OPUflex
0x10	Bit stream with octet timing mapping
0x11	Bit stream without octet timing mapping
0x12	IB SDR mapping into OPUflex
0x13	IB DDR mapping into OPUflex
0x14	IB QDR mapping into OPUflex
0x15	SDI mapping into OPU0
0x16	(1.485/1.001) Gbit/s SDImapping into OPU1
0x17	1.485 Gbit/s SDI mapping into OPU1
0x18	(2.970/1.001) Gbit/s SDI mapping into OPUflex
0x19	2.970 Gbit/s SDI mapping into OPUflex
0x1A	ESCON mapping into OPU0
0x1B	DVB_ASI mapping into OPU0
0x1C	FC-16000 mapping into OPUflex
0x20	ODU multiplex structure
0x21	OPU2,OPU3 1.25 Gbit/s tributary slot multiplex structure
0x55	Not available
0x66	Not available
0x80	Reserved code for proprietary use (non-standard payload mappings)
0xFD	NULL test signal mapping
0xFE	PRBS test signal mapping
0xFF	Not available

7.1.1.5 TP/TS

Touching a **TP** button on the **Ports Setup** screen launches the **TP/TS** dialog box. Note that the contents and layout of the dialog box depends on which higher order type has been selected.

Port 1	Port 2	Application Se	elector		
Tx→		ODTU2.1	TP/TS	CONTROLLAR STREET	
Rx→	Allocated TC			None 🔽	
Mapping FEC Cont			1	mission Normal	\bigcirc
				S I Level -6.27 dBm	?
	Main TP/TS				
Dum	TS +1 +2 +3 +		+8	_	¥,
La	0 1 2 3	4 5 6 7	8	OF	
Tx OTU2 ODU2	🔵 Main TP 📄 Dumr	my TP Preset	Random)TU-AIS	Ē
				M-BIP8	
OH)H capture	
				Tributary	X
				Close ransceiver	
	SE	TUP TEST	RESULT	🗃 ኛ 🥻 V 📑 18:24	

This dialog box allows you to define OTUk frame mapping.

- Main TP/TS: Tributary Port/Slot number of Measurement target for Lower order ODU frame.
- **Dummy TP**: Condition of TP/TS(s) other than Main TP/TS. Transmitted signal is selected by *Dummy CH*.
 - **Copy**: The signal same as Main TP/TS is transmitted.
 - **Unused**: Lower order ODU frame constructed of PRBS mapping is transmitted.

7.1.1.6 GFP-T

GFP-T means Transparent Generic Framing Procedure, defined by ITU-T G.7041/Y.1303. When OTN layer is added to Ethernet applications, **GFP-T** button appears in the setup area of the **Ports Setup** screen if Client Signal is selected to **GbE**. Touching an **GFP-T** button launches the below dialog box.

Port 1 Port 2 Application Selector		
$Tx \rightarrow OTU2 - ODTU2.1#1 - OPU0 \rightarrow Eth$ $Rx \rightarrow OTU2 - ODTU2.1#1 - OPU0 \rightarrow Eth$	Follows None	
Mapping FEC Control: RS(255,239)	oding: TU-T Transmission LOS Signal Level	*
GFP-T Setup	-2.53 dBm	
Dummy CH CSF Replacement: Ethernet Block Repl	lacement V OF	?
Tx OTU2 ODTU:	el Ok Ethernet	
	Configure OH capture	ť
	Tributary scan	×
	Transceiver	
Mon./Gen. <u>SETUP</u> TEST RESULT	📑 🗃 🖘 🧏 V 📑 15:40	

CSF Replacement

Setting behavior of GFP-T when CSF (Client Signal Fail) occurs.

- Ethernet Block Replacement : Transmits 10B data to indicate the link error.
- **GFP-T CSF Replacement** :Transmits CSF and IDLE frames CSF is transmitted with 500 ms interval.

7.1.2 Receiver Setup

7.1.2.1 Physical Setup

When the receiver is set up with an OTUk interface, touching the **Rx** button in the navigation area will launch the following screen.

This screen allows you to make the physical setup of the receiver in OTN mode. It can also be used to inspect the current status of the selected port in Port mode lamps.

The configuration options available in the setup area of the screen are described below. The status information is described in a separate section.

Receiver Touch the button to select the interface.

- **Off**: No signal input interface.
- **SFP/SFP+**: Available bit rate is up to 2.5 Gbit/s for SFP, up to 10 Gbit/s for SFP+.

Transceiver Displays the Transceiver information.

7.1.2.2 OTUk Frame Setup

Touching the navigation area button which represents the receiver's OTN layer will launch the screen shown below.

This screen allows you to configure OTUk frame of the currently selected receiver. It can also be used to inspect the current status of the selected port in a separate screen.

To setting up the OTU frame, touch **Mapping** button at first. Then select the relevant values for the various containers in the structure shown in the setup area, either by opening a drop-down menu or by touching a button to launch an editor dialog box.

Note that the changes you make will be reflected in the text displayed in the OTUk button in the navigation area.

Follows

To make the currently selected receiver follow either the transmitter or Port 1 receiver (i.e. copy its settings), touch the right-most button in the navigation area and select the relevant value in the drop-down menu. The default setting is **None**. Note that the Port 1 receiver cannot follow the Port 2 receiver.

Mapping

Touch the **Mapping** button and use the launched Dialog box to define the OTUk frame mapping. The following settings are available:

- Input Signal
- <u>Client Signal</u>
- <u>Multiplexing 1</u>
- <u>Multiplexing 2</u>

See a description of the setting options in the *Mapping* section under setup of transmitter.

FEC Control

Use the drop-down menu to select whether or not to transmit FEC (Forward Error Correction) data.

- No FEC: FEC Decoding (Error Correction) is set OFF.
- **RS(255,239)**: FEC Error Correction is active based on RS(255,239) code defined in ITU-T Rec. G.709.

TTI detection

Launches the **TTI detection** dialog box where you can select detection method for SM, PM, and TCM1-6.

The dialog box is shown and described in the *TTI detection* section.

Auto, TP

Only displayed when the frame mapping is set to multiplexing. Touch the **Auto** or **TP** # button and use the launched dialog box to set the number of TP or TS. When **Manual** or **Auto detect TS** are selected, TP number can be detect automatically, so "Auto" is shown on the button. **Auto detect TP** is selected, TP number can be set directly. So "TP #" is shown on the button.

The dialog box is described in the *TP/TS* section below.

MSIM detection

Only displayed when the frame mapping is set to multiplexing. Touch the **MSIM detection** button and use the launched dialog box to set the detection method of MSIM.

The dialog box is shown and described in the MSIM Detection section.

Configure

Only displayed when the client signal is PRBS. Touch the **Configure** button to launch a dialog box where you can select pattern type.

- PRBS9 to PRBS31: Pseudo-random bit sequence. The number indicates the bit length of sequence.
 For example, bit length of PRBS9 is 2⁹-1=511.
- User [32] bit, User [2048] bit: 32 bits or 2048 bits length pattern. The field which shows bit length is enabled. Touch the field to launch the dialog box to define the bit pattern. Refer to <u>The User Pattern Editor</u>.

тсм

Use the drop-down menu to select whether or not to enable measuring TCM (Tandem Connection Monitoring) alarms and errors.

- **On**: Enables measuring TCM alarms and errors.
- Off: Disables measuring TCM alarms and errors.

7.1.2.3 TP/TS

Touching a **TP** or **Auto** button on the **Ports Setup** screen launches the **TP/TS** dialog box. Note that the contents and layout of the dialog box depends on which higher order type has been selected.

TP/TS dialog box has three screen depending on the **Mode** setting.

7.1.2.4 TTI detection

Touching the **TTI detection** button in the upper right-hand corner of the **Ports Setup** screen launches the dialog box shown below.

	Port 1	Port 2 Applicat	ion Selector		
	Tx →	OTU2 - ODTU12(PT=21)#1 - ODTU01#1 - OPU0	Follows	
	Rx →	OTU2 - ODTU12(PT=2	21) - ODTU01#1 - OPU0	None 💌	
Ma	pp	TTI d	etection	? ×	
	SM:	SAPI and DAPI	PM:	Off 📃	0
	TCM1:	SAPI, DAPI and Operator	тсм4:	Off 📃	
	TCM2:	Off	тсм5:	Off 🛛	Ĕ
	тсмз:	Off	тсм6:	Off 🛛	i f
Rx	Ь				
				Cancel Ok	
TOM	MSIM detection	MSIM		Tributary scan	
				Transceiver	
	BERT	SETUP TE	ST RESULT	📑 🛪 🎘 🗸 🇾 18:26	

This dialog box allows you to select the detection method for SM, PM, and TCM1-6.

- **SAPI** (Source Access Point Identifier)
- DAPI (Destination Access Point Identifier)
- SAPI and DAPI
- SAPI, DAPI and Operator (32-Byte Operator specific)

7.1.2.5 MSIM detection

Touching an **MSIM detection** button on the **Ports Setup** screen launches the **MSIM Detection** dialog box.

The dialog box is used to set the detection method of MSIM (Multiplex Structure Identifier Mismatch).

Setup Follow

Select the source of the Expected MSI in the drop-down menu. The expected MSI is displayed in the dialog box.

- (None) : MSIM is not detected.
- **Tx Data** : Expected MSI are copied from OH Preset data.

• **Received Data**: Expected MSI are set from received MSI data.

7.1.3 Status Information

This section describes the status information available for the OTN layer in the status area of the **Ports Setup** screen.

7.1.3.1 Status Summary

The status summary displayed for the OTN layer consists of the following information:

- **Physical Status** The topmost part of the status area gives you access to information about the current physical status of the selected interface. A summary consisting of the most relevant status indicators is displayed constantly. By touching the summary, you can launch a display that contains the detailed status information.
- Alarm/Error Status The middle part of the status area gives you access to alarm and error information for the selected interface. The status is indicated by the lamp color. You can choose whether to view only the current alarm and error status, or to view all alarms and errors in the alarm trap since it was last reset.

A summary consisting of the most relevant alarm/error indications is displayed constantly. By touching the summary, you can launch a display that contains all alarms/errors.

- **Capture/Monitor** At the bottom of the status area are below buttons that give you access to various capture/monitor information. By touching a button, you can launch the corresponding information display.
 - OH capture
 - Tributary scan
 - Transceiver

7.1.3.2 Physical Details

Touching the topmost summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen presents detailed information about the current physical status of the optical signal.

Shows the input level of an optical signal. A lamp icon indicates the LOS state.

Frequency

Shows the input signal frequency and the deviation of the input signal from the nominal bit rate in ppm.

Tx Signal Level

Shows the output level of an optical signal.

Frequency

Shows the output signal frequency and the deviation of the output signal from the nominal bit rate in ppm.

7.1.3.3 Alarms and Errors

Touching the middle summary box in the status area of the **Ports Setup** screen displays the status shown below.

This screen contains detailed alarm and error information related to the OTN layer. Status is indicated by the use of <u>colored lamp icons</u>.

If the ODUk is multiplexed, touch the relevant OTU/ODUk level button.

Level-specific alarms

OTU Alarms

Alarms

e re / lamb
LOS: Loss of Signal.
OTU-AIS : Optical channel Transport Unit Alarm Indication Signal.
LOF: Loss of Frame
LOFLOM: Loss of Frame and Loss of Multiframe
OOF : Out of Frame
LOM: Loss of Multiframe
OOM : Out of Multiframe
SM-TIM : Section Monitoring Trail trace Indicator Mismatch
SM-BIAE: Section Monitoring Backward Incoming Alignment Error
SM-BDI: Section Monitoring Backward Defect Indicator
SM-IAE: Section Monitoring Incoming Alignment Error
ODU Alarms
ODU-AIS : Optical channel Data Unit Alarm Indication Signal
ODU-LCK : Optical channel Data Unit Locked Signal
ODU-OCI : Optical channel Data Unit Open Connection Indication
PM-TIM : Path Monitoring Trail trace Indicator Mismatch
PM-BDI: Path Monitoring Backward Defect Indicator
PLM: Payload Mismatch
MSIM: Multiple Structure Identifier Mismatch

CI-AIS: Characteristic Information Alarm Indication Signal **CSF**: Client Signal Fail LSS: Link Status Signal **TCM** Alarms TIM: Trace Indicator Mismatch **BIAE:** Backward Incoming Alignment Error **BDI**: Backward Defect Indicator IAE: Incoming Alignment Error LTC: Loss of Tandem Connection Errors **OTU Errors** FAS: Frame Alignment Signal MFAS: Multiframe Alignment Signal SM-BIP8: Section Monitoring Bit Interleaved Parity 8 SM-BEI: Section Monitoring Backward Error Indication FEC corrected: Forward Error Correction Corrected FEC uncorrected: Forward Error Correction Uncorrected **ODU Errors** PM-BIP8: Path Monitoring Bit Interleaved Parity 8 PM-BEI: Path Monitoring Backward Error Indicator **OPU Errors** Pattern error: Bit error detected in the payload TCM Errors TCMi-BIP8: Bit Interleaved Parity 8 TCMi-BEI: Backward Error Indication (i=1 to 6)**GMP Errors** CRC8 error: CRC8 error occurred CRC5 error: CRC5 error occurred FCS error: Frame Check Sequence error detected **GFP Errors** cHEC correctable: core Header Error Check Correctable cHEC uncorrectable: core Header Error Check Uncorrectable tHEC correctable: type Header Error Check Correctable tHEC uncorrectable: type Header Error Check Uncorrectable eHEC correctable: extension Header Error Check Correctable eHEC uncorrectable: extension Header Error Check Uncorrectable Invalid GFP frame: Invalid Transport Generic Frame Procedure Frame Superblock CRC: Superblock where CRC error occurred CSF signal: Client Signal Fail CSF sync: Client Signal Fail synchronization SSF: Server Signal Failure

7.1.3.4 OH capture

Touching the **OH capture** button in the status area of the **Ports Setup** screen displays the status shown below.
		Ро	rt 1		F	Port 2		L	App	olicatio	on Sel	ector						С
	Tx]←[C	TU2 -	ODTU	J12(PT	=21);	#1 - C	DTU0	1#1 -	OPUO			Follows	
	Rx]→[OTU2	- OD	TU12(PT=21	.) - 0[DTU01	#1 - (OPUO			None 🔻	\bigcirc
	Level		1	.: OTU	2 🔻)											Transmission Normal	
			F/	٩s			MF		SM		GC	C0	RI	S	RES	JC1	LOS Signal Level	0
	F6	F6	F6	28	28	28	12	50	EB	00	00	00	00	00	00	00	-6.27 dBm	U
	RI	s	Ρ&Τ	T/A		тсме			т см5			тсм4		FTFL	RES	JC2	OIN	¥,
	00	00	00	00	50	EB	01	50	EB	01	50	EB	01	00	00	00	LOF	-4
ſ		тсмз			тсм2			тсмі			РМ		E)	(P	RES	јсз	OTU-AIS	Ľ
ľ	50	EB	01	50	EB	01	50	EB	01	50	EB	01	00	00	00	00	EM DIDO	
	GC	C1	GC	C2		APS	PCC		RES				PSI NJO			SM-BIP8		
	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	OH capture	X
		1	1	I				1	1	I							Tributary scan	
	PSI[0]	= 0x	21 OP	U2, O	PU3 1	.25 Gl	oit/s tr	ibutar	y slot	multip	lex st	ructur	e		Pause	•	Transceiver	
	000	BE	RT				2	SETL	<u>JP</u>	TES	т	RES	ULT	[<u>)</u> (≫ V 🗾 18 28	

This screen shows OTU/ODU/OPU OH capture data for one frame at time. Use the **Level** drop-down menu to select which multiplexing level to display. For a description of the frame structure, see the <u>Overhead Dialog box</u> section under the ports setup of OTN.

Refreshing information

Refresh once

When touch the **Pause** button, the **Update** button appears at left side of the **Pause** one and information is not updated. Touching the **Update** button will refresh the dialog information once.

Refresh continuously

When the dialog is open and touch the **Pause** button at refresh once mode, information is updated continuously.

Displaying detailed information Detailed overhead byte information can be accessed by touching the name of a specific byte. This will launch a separate dialog box containing a description of and details about the selected byte.

In the byte-specific dialog box, select the display format (ASCII or Hex) using the **Operator Specific Area** drop-down menu.

7.1.3.5 Tributary scan

Touching the **Tributary scan** button in the status area of the **Ports Setup** screen displays the status shown below.

Port 1	Port 2 Application Selector		- -
Tx→	OTU2 - ODTU12(PT=21)#1 - ODTU01#1 - OPU0	Follows	
Rx →	OTU2 - ODTU12(PT=21) - ODTU01#1 - OPU0	None 🔻	\bigcirc
	Detail Scan Scan Stop	Transmission Normal LOS	
ODU1 TP	#1 #2 #3 #4	-6.27 dBm	?
ODUO TP	#1 #2	O LOF	E
(• OTU-AIS	
		SM-BIP8	
		OH capture	X
		Tributary scan	
		Transceiver	-
Bert	SETUP TEST RESULT 🔋 🗃 ኞ	🔉 V 🗾 18:28	

A *Tributary scan* detects errors and alarms over multiple Tributary Ports depending on the current mapping settings at the receiver port. The screen displayed by the **Tributary scan** button can be used to acquire the tributary status information.

The screen contains the following buttons: **Detail**, **Scan**, **Scan Start/Stop**. The **Scan** button is active when the screen is displayed.

Start scanning

Touching the **Scan Start** button scans one level at a time. With the **Scan** button active (displayed in green), you can select the Tributary Port to scan by touching the number button. The buttons are shown in green or red according to the scan result. Note that only one ODUk at the first level is displayed.

Detail

Touching the **Detail** button enables the showing of details for a specific ODUk. With the **Detail** button active, you can see the detail information by touching the button in red. **Tributary details** dialog box contains the following information:

- Path to the selected form (for example, "ODU2-ODTU12(PT=21)-ODU1 #2")
- Errors and alarms detected at the selected channel.

Touching the button in green does not launch the dialog box.

To change TP to scan, touch the **Scan** button.

Tributary Scan Results are cleared, when close the dialog box, move other status area or move other screens.

Stop scanning

Touching the **Scan Stop** button stops the scanning session.

7.1.3.6 Transceiver

Touching the **Transceiver** button in the status area of the **Ports Setup** screen displays the status shown below.

This screen presents status information about the optical transceiver.

Module Present Green indicates that optical transceiver presents.

TransceiverSelect the information from pull down menu.Information

- Wavelength and bit rate shows the nominal wavelength and bit rate.
- **Compliance** shows the available standards.
- Vendor information shows the data stored in the optical transceiver.

Power monitor The transmitting optical power is displayed in left column. Unit of the optical power is dBm.

The received optical power is displayed in right column. Unit of the optical power is dBm.

7.2 APS

The Automatic Protection Switching (APS) test measure the switching time protecting from the failure.

Switching time is defined as below.

- The start and stop trigger can be selected independently.
- Trigger event can be selected from the high order OTU and ODU.
- You can set the Pass/fail threshold for Switching Time.
- Test result include pass/fail, switching time (minimum, maximum and average) and the measurement count of switching.

7.2.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the OTN interface are described in a separate section:

• OTN Setup and Status

7.2.2 Test Setup

7.2.2.1 Thresholds

Following screen is displayed for the **Test Setup**.

Port 1 Port 2	Application Selector	
	Threshold	
_Measurement Condition		
Start Trigger:	LOF	
Stop Trigger:	LOF	2
Error Free Period:	1ms 🗸	-4
_ Threshold		
Threshold:	50.000	ms
		×
APS	SETUP <u>TEST</u> RESULT	· 🔋 🗃 🖘 🕅 V 📑 18 39

APS

This screen contains the parameters for setting up the threshold values for errors and Pass/Fail status.

Start Trigger, Stop Trigger

Use the drop-down menu(s) to select the relevant item (**LOF**, **OOF**, **ODU-AIS** etc.).

Error Free Period

Alarms or Errors set up in stop trigger are not in a measured signal within the time of this cycle, end the switching time measurement.

Threshold

Allows you to specify the maximum duration of the selected reference event(s). Valid values are from **0.000 ms** to **10000.000 ms**.

7.2.3 Test Results

7.2.3.1 Summary

Touching the **Summary** button in the navigation area will display the screen shown below.

Port 1 Port 2	Res	ult File Browser			
2014-06-03 18:42:16	00	:01:14			
Summary)	Detailed	
Start Triagor					0
Stop Trigger	ODU-AIS				2
Average switching time		0.0	000 ms		
Max. time		0.0	000 ms		
Threshold		50.0	000 ms		
					X
APS	SETUP	TEST <u>RESULT</u>	<u> </u>	🖘 ጅ V 🗾 18:43	

The following information is displayed:

- Start Trigger
- Stop Trigger
- Average switching time : Average time of switching
- Max. Time : Maximum time of switching
- Threshold : The threshold value used in the test

7.2.3.2 Detailed

Touching the **Detailed** button in the navigation area will display the screen shown below.

Port 1	ort 2	Result File Browser	
2014-06-03 18:42:16		00:01:19	
Summary		Detailed	
		Automatic Switching Time (ms)	\bigcirc
			?
		0.6 -	Í
		0.4	
Minimum switching time Average switching time	0.000 ms 0.000 ms		
Maximum switching time Threshold Measurement count	0.000 ms 50.000 ms 0	0 5 10 15 20 ◀	×
APS	SE	etup test <u>RESULT</u> 🔋 🍽 🏟 🕅 V 🗾 18:43	

Buttons for selecting the relevant port are displayed at the top of the screen, with a color indication of the pass/fail status of the test.

This screen presents the detailed results of an OTN APS test. The results relate to a specific port and consist of the Automatic Switching times of the APS requests. The data is shown in both list-form and in a graphical presentation. This screen contains the summary field displayed below the list.

Summary field Consists of the minimum, maximum, and average automatic switching times in milliseconds, the specified threshold value, the number of measurements.

List-form Presents the automatic switching times in list-form. **information**

Graphical
presentationThe graphical presentation consists of a bar diagram of the automatic
switching times. Results affected by unexpected alarms/errors are indicated.

7.3 BERT

1101 1011

The Bit Error Rate Test (BERT) described in this section is applicable for OTN interfaces.

7.3.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the OTN interface are described in a separate section:

• OTN Setup and Status

7.3.2 Test Setup

7.3.2.1 Control

When you go to the test setup of the OTN BERT application, the following screen is displayed.

		Application Se	elector		- -
Con	trol		Thre	sholds	
Interval length:	5 seconds				\bigcirc
Start action:	Immediate		Start at:	2001-01-01 00:00:00	
Stop function:	Manual stop		Stop at:	2001-01-01 00:00:00	?
Memory allocation:	Use all storage		Estimate of test duration	00d:03:25:45	
Performance Parameters					
OTN: M.2401(M.2110)	▼				1
Time period: 15 minutes	•				
Allocation Setup					
					X
	ertu				
BERT	SETU	P <u>1ES I</u>	RESULT	📑 🥱 🧏 V 🛃 18-35	

This screen allows you to configure the test mode and other general parameters related to the test.

Interval length

Allows you to specify the duration of the BERT intervals. The drop-down menu contains the following values: **1 second**, **2 seconds**, **5 seconds**, **10 seconds**, **15 seconds**, **30 seconds**, **1 minute**, **5 minutes**, **10 minutes**, **15 minutes**, **30 minutes**, **1 hour**, **2 hours**, **4 hours**, **6 hours**, **12 hours** or **No Intervals**.

Start action

Allows you to specify when the measurement is started.

- If **Immediate** is selected, the measurement starts when you touch the **Start** button.
- Selecting **Start at** will enable a delayed start. The start time for a delayed start can be specified in the adjacent **Start at** field.

Stop function

Allows you to specify when the measurement ends. Select the relevant option from the drop-down menu:

- If **Manual stop** is selected, the measurement will stop immediately when the **Stop** button is touched.
- Selecting **Stop at** will enable the adjacent field, in which you can specify the stop time.
- Selecting **Duration** will allow you to specify a duration time in the adjacent field.

Memory allocation

Allows you to specify how the measurement will be stored in the Network Master's memory. Select the relevant option from the drop-down menu:

- Use all storage: When Network Master's memory became full with measured data, the whole measurement is stopped.
- Continuous: When Network Master's memory became full with measured data, oldest records in that memory will be overwritten.

Estimate of test duration

Contains an estimation of the time (in days, hours, minutes and seconds) before the whole memory will be filled out by the test. The estimated value is dependent on the current interface and selections concerning this interface. During an ongoing measurement, the estimate will be recalculated periodically, that the estimate will get better and better.

Performance OTN Parameters

Select the ITU-T Recommendation applying to the test.

- **G.8201** Error performance parameters and objectives for multi-operator international paths within the Optical Transport Network (OTN)
- M.2401 (M.2110)

 M.2401 Error performance limits and procedures for bringing-intoservice and maintenance of multi-operator international paths and sections within an optical transport network
 M.2110 Bringing into service international multi-operator paths, sections and transmission systems

Time period

This parameter is displayed if *OTN* is set to M.2401(M.2110). **15 minutes**, **1 hour**, **2 hours**, **24 hours**, **7 days**

Allocation

Touching the **Setup** button launches the dialog box shown below.

			Application S	elector				
			Perform	ance		-5.5		
Inter	M.2401(M.2110)							\bigcirc
S	OTUk Allocation:	100.00)% 01	DUk Allocation:	100.00	%	00:00	
Sto	TCM1 Allocation:	100.00)% тс	M4 Allocation:	100.00	%	00:00	?
Memory	TCM2 Allocation:	100.00)% тс	M5 Allocation:	100.00	%	5	
Performance	TCM3 Allocation:	100.00)% тс	M6 Allocation:	100.00	%		E,
OTN: M.240	Section Objective (SESR)	: 1	.00 E-1					Í
Time period:	Section Objective (BBER)	: 1	.00 E-1					
Allocation								
								X
					Cancel	Ok		
BBBB BEI	RT	SETUP	<u>TEST</u>	RESULT	📋 📑	× 📴 V 🖪	18 35	

The dialog box is used to set up various performance parameters.

Туре

Select the performance type as either **G.8201** or **M.2401/M.2110**. The contents of the dialog box depends on the selected performance type.

Allocation

This parameter is displayed if *OTN* is set to M.2401(M.2110). Set the Allocation ratio of OTUk, ODUk or TCMi. These parameters are displayed if *Type* is M.2401/M.2110.

Section Objective (SESR)

Set the limit of SESR (Severely Errored Seconds Ratio). SES (Severely Errored Second) is a one-second period which contains 15% or more errored blocks or at least one defect.

Section Objective (BBER)

Set the limit of BBER (Background Block Errors Rate). BBE (Background Block Error) is an errored block not occurring as part of an SES.

7.3.2.2 Thresholds

Touching the **Thresholds** button in the navigation area displays the following screen.

Port 1	Port 2 App	lication Selector		
Contro	I		Thresholds	
BERT Threshold Monitoring.	O Ratio[%]	Transport Interface Evaluation item: Evaluation type: Pass & fail threshold	OTN Any Alarm or Error Count Ration	
BERT	SETUP	TEST RESULT	🥛 🗃 🖘 🕅 V 📑	18:36

This screen contains the parameters for setting up the various threshold values (i.e. limits) for errors and Pass/Fail status that are used during the monitoring.

Pattern Errors Allows you to enable monitoring of pattern errors (i.e. bit errors) and to set up a threshold value for the bit error ratio. Select the checkbox to enable the parameters.

Choose whether the threshold is specified as an absolute value or a percentage, using the **Count**, **Ratio** and **Ratio** [%] radio buttons, and then specify the value in the **Threshold** field.

Transport Select the checkbox to enable the transport-related parameters.

Interface Fix to OTN.

Evaluation item

Use the drop-down menu to select the item to evaluate. If selecting other than **Any Alarm or Error**, another menu appears.

Evaluation type

Select the relevant type.

Pass & fail threshold

Touch the left-hand number to set the lower limit for "Warning". Touch the right-hand number to set the lower limit for "Fail". The lower limit of "Fail" must be equal to or greater than the lower limit of "Warning" (defining a "Within limits" range in between them).

Thresholds can only be set/modified while no measurement is running, as they are active during a measurement.

7.3.3 Test Results

7.3.3.1 Summary

Touching the **Summary** button in the navigation area will display the screen shown below.

Port 1	Port 2	R	esult File Brow	ser		
2014-06-03 18:37:	:16	0	0:00:27			
Summary					Statistics 📕	
BER Pattern error	Error count	Rate	0.00	Transport Below limits (OTN - Any	Alarm or Error)	•
Threshold:			0			?
						E
St	atistics Category	Stati	ıs	Pattern		1
OTN - Alarms/E	rrors			PRBS31		
OTN - Performa	nce			Pattern Error Inserti	on	
				Insertion Mode:	ingle 🔽	X
BEI	RT	SETUP	TEST F	RESULT	💸 🕅 V 📑 18 37	

This screen shows the summary of all error count and ratio. You can insert the pattern error in this screen.

BER

Displays the result of pattern errors and threshold.

Statistics Category

The lamp icon in Status column shows the Pass or Fail results. Touching the Status column displays the statistics results.

Transport

Displays the result of Pass & fail threshold if Transport is selecting in **Test Setup** screen.

Pattern

Select the pattern. You can edit bit pattern when the pattern is User[32] bit or User[2048] bit.

Pattern Error Insertion

Select the checkbox to enable the pattern error insertion.

Select Insertion Mode to **Single** or **Rate**. When **Single** is selecting, touch Alarm/Error Insert icon in the Application Toolbar.

7.3.3.2 Statistics

Touching the **Statistics** button in the navigation area displays the screen shown below.

			Re	esult File Bro	owser				
2014-06-06 09):16:	10					2014-0	06-06 09:16:51	
Summary	Summary								(\triangleright)
<u>Total</u> 2014-06-06		OTN - Alarms/E	rrors				SI prefix		
09:16:11		OTU/ODU							
2014-06-06 09:16:25								A	?
2014-06-06		OTU alarms	Count	Ratio		Count	Ratio		
09:16:40		Signal	OTU2			OTU2			
		LOS		0	0.00		0	0.00	1
		OTU-AIS		0	0.00		0	0.00	
		LOF		0	0.00		0	0.00	
		OOF		0	0.00		0	0.00	
		LOM		0	0.00		0	0.00	X
	•	ООМ		0	0.00		0	0.00 🔻	
	BEF	ят	SETUP	TEST	RESUL	I 🔒	⊨ 📑 🖘 🕅 🗸	/ 🗾 09 16	

This screen presents a detailed analysis of the test results. You can choose to view either the current results (i.e. results measured during one second) or the total results from measurement start. You can also zoom in on a specific result item. The results can be displayed either in table (list) form or as a graph.

Selecting which results to view

Selecting the interval time

Touch the **Total** button to switch the total values measured in all interval times. The start time of measurement is displayed on the button.

Touching the button in left side **Back** field shows the measured values in the interval time. The end time of the interval is displayed on the button.

Current button is displayed at left bottom when the measurement is running. Touching the **Current** button shows the measured values in the current interval time. The start time of the current interval is displayed on the button.

The slide-out panel on the left-hand side of the screen contains the following functions:

- Only show intervals that contains errors
- Time format

Summary		
Only show ir that contain		
Time format:	Absolute	
	-	

	If you have stopped measurement during the interval time, the measurement results of current interval are discarded. The log of current interval is not displayed in Back field. In this case, result data are re-calculated excluding the data of current interval when the measurement is stopped. This causes that "Count" and "Ratio" displayed after the measurement will be different from that of during measurement. The sum of interval time (multiplied interval time by the number of back logs) may not match the differential time between displayed time at left top and right top after the measurement.
Selecting type of results	Open the drop-down menu in the top row plus the drop-down menu below it to select which results you want displayed on the screen. • OTN - Alarms/Errors
	OTN - Performance
	Selecting how results are displayed
Selecting notation	Select the required notation for the results from the notation drop-down menu.
	 Unformatted e.g. 71892 SI prefix e.g. 71.892 k (k means "kilo") Engineering e.g. 71.892E3 Scientific e.g. 7.1892E4
	Results
	OTN - Alarms/Errors
	OTU/ODU OTU alarms OTU errors ODU alarms ODU errors Stage1 ODU ODU alarms ODU errors Stage2 ODU ODU alarms ODU errors Client Client alarms Client errors ODU TCM ODU TCMi alarms ODU TCMi errors
	• OTN - Performance
	OTU/ODU OTU ODU Stage1 ODU ODU

MT1000A Network Master Pro

Stage2 ODU ODU

тсмі

ODU TCM

7.4 RTD

The Round-Trip Delay (RTD) time is the duration time of the network and the network equipments.

Network Master measures RTD using a trigger injected in ODU frame. At first, Network Master transmits the trigger signal. Network Master measures the RTD by receiving the trigger signal returned from the network to be measured or the network equipment.

7.4.1 Ports Setup and Status

The first step in running an application is to set up the port interfaces. This is done on the **Ports Setup** screen, which also provides port status information.

The setup options and status information related to the OTN interface are described in a separate section:

• OTN Setup and Status

7.4.2 Test Setup

7.4.2.1 Control

When you go to the test setup of the RTD application, the following screen is displayed.

	Appli	ication Selector		
Control			Threshold	
Test Condition				
Mode:	Repeat	V		
Measurement period:	1 second	\		?
				Ē
				×
📗 👌 RTD	SETUP	TEST RESULT	📋 🗃 🛪 🎘 V 🗾 18:44	

This screen allows you to configure the *RTD test* conditions for the currently selected port(s).

Mode

Allows you to define the test duration in one of two ways:

- Single Used to perform RTD test once.
- **Repeat** Used when a *persistent RTD test* is needed.

Measurement period

Measurement period can be set maximum RTD per one Test.

Test Condition

7.4.2.2 Threshold

Touching the **Thresholds** button in the navigation area displays the following screen.

Port 1 Port 2	Application Selector		
Control		Threshold	
_ Threshold			
Maximum limit:	1000000.0	us	2
[
			×
RTD	SETUP TEST RES	ULT 🧧 📑 🕅	V 🛃 18 44

This screen allows you to configure the *RTD test* conditions for the currently selected port(s).

Threshold Maximum limit

Allows you to specify a threshold value of RTD in micro seconds (μ s).

7.4.3 Test Results

7.4.3.1 Summary

Touching the **Summary** button in the navigation area will display the screen shown below.

2014-06-03 18:44:58 00:00:20 Summary Detailed Measurement count 17 Minimum delay 0.2 us Average delay 1.0 us Maximum delay 3.3 us Maximum limit 10000000.0 us	Port 1	Port 2	Result File Browser			
Summary Detailed Measurement count 17 Minimum delay 0.2 us Average delay 1.0 us Maximum delay 3.3 us Maximum limit 10000000.0 us	2014-06-03 18:44:58		00:00:20			
Measurement count 17 Minimum delay 0.2 us Average delay 1.0 us Maximum delay 3.3 us Maximum limit 10000000.0 us	Summary				Detailed	
Measurement count 17 Minimum delay 0.2 us Average delay 1.0 us Maximum delay 3.3 us Maximum limit 10000000.0 us						
Average delay 1.0 us Maximum delay 3.3 us Maximum limit 10000000.0 us	Measurement count Minimum delay	17	c).2 us		?
Maximum limit 1000000.0 us	Average delay Maximum delay		1	1.0 us 3.3 us		Í
	Maximum limit		1000000).0 us		
						×
🔥 RTD SETUP TEST RESULT 📄 🎮 🖘 🐼 V/ 🖼 18.45	BID	SETUP	TEST RESULT		🔿 💁 🔰 🚺 🖬 45	

This screen presents a summary of the RTD test results, for all of the ports included in the test. For each port, the information consists of:

- The total number of measurements
- Minimum, Average and Maximum RTD in micro seconds
- Threshold value

7.4.3.2 Detailed

Touching the **Detailed** button in the navigation area will display the screen shown below.

Buttons for selecting the relevant port are displayed at the top of the screen, with a color indication of the pass/fail status of the test.

This screen presents the detailed results of an RTD test. The result is shown in both list-form and in a graphical presentation. This screen contains the summary field displayed below the list.

Summary field Consists of the minimum, maximum, and average round-trip delay times in micro seconds, the number of measurements, the specified threshold value and measurement period.

List-form Presents the results of an RTD test in list-form. **information**

GraphicalThe graphical presentation consists of a bar diagram of the round-trip delay
times.

8 Specifications

8.1 MT1000A

This section contains specifications for the Network Master Pro, MT1000A (mainframe).

8.1.1 Configuration

	- Main Frame -
MT1000A	Network Master Pro
	- Standard Accessories -
J1565A	Line Cord USA
J1566A	Line Cord Europe
J1567A	Line Cord UK
J1568A	Line Cord Australia
J1594A	Line Cord Japan
J1596A	Line Cord Korea
G0309A	AC Adapter
G0310A	LiION Battery
B0690A	Softbag
B0692A	ESD box
Z1746A	Stylus
Z1747A	Carrying Strap
Z1748A	Handle
Z1817A	Utilities ROM
W3681AE	Quick Reference Guide
	- Options -
MT1000A-003	Connectivity for WLAN/Bluetooth
MT1000A-ES210	2 Years Extended Warranty Service
MT1000A-ES310	3 Years Extended Warranty Service
	- Optional Accessories -
B0691A	Hard case
G0324A	Battery Charger
G0325A	GPS receiver
J1570A	Head Set
W3682AE	Operation Manual
	- Plug-in Unit -
MU100010A	10 G Multirate Module

8.1.2 External Interfaces

Internal Clock Ref Clock Input	ClockAccuracy ±4.6 ppm or less, STRATUM 3 compliantClockBITS (DS1 1.544 Mbit/s), SETS (E1 2.048 Mbit/s), 2MHz ClockITU-T G.703 compliant			
	Connector		BNC Jack	
	Range		±100ppm	
Service interface	USB (A x 2 RJ45 Etherr WLAN (2.4) Bluetooth (3.5mm Aud AUX Conne	, mini B x 1 Port, Re net (10/100/1000 B GHz IEEE802.11b/g (BT2.1+EDR) dio Jack ector (for connection	vision 2.0) ASE-T) J/n) on of optional G0325A GPS	receiver)
Remote Control	Ethernet			

8.1.3 Other Interfaces

Input device	Power switch, Touch panel
LCD	9 inch display with WVGA resolution ($800x480$ pixels).
LED	On, Standby, Charge
Speaker	Built-in monaural speaker
Storage Memory	1GB for User use

8.1.4 Environment Performance

Voltage	DC	18 V			
	AC	100 adap	V to 240 V, 50/60 Hz (with dedicated AC ptor)		
	Battery Dedicated 10.8 V Rechargeable smart Li-ion battery				
Power consumption	65 W m	iax.			
Temperature	Operating:		0°C to +50°C, \leq 85%RH (non-condensing) *		
range	Charging battery:		0° C to +40°C, ≤85%RH (non-condensing)		
	Storage	e:	-30°C to +60°C, \leq 90%RH (Excluding battery and AC adapter) -20°C to +50°C, \leq 90%RH (Including battery and AC adapter) (non-condensing)		
	*: The maximum allowed charging temperature will be reduced if the instrument is switched on.				
EMC	EN61326-1 and EN61000-3-2.				

LVD EN61010-1.

8.1.5 Mechanical Performance

 Size
 163(H) x 257.6 (W) x 43.5(D) (Excluding projections)

 Mass
 1.6 kg max.

8.2 MU100010A, 10 G Multirate Module

In the following you find specifications for the Network Master Pro MU100010A module. The MU100010A specification lists the functionality added to the basic Network Master Pro by installing the MU100010A option. Refer to the *Specifications, MT1000A* section for further information about the Network Master Pro's basic functionality.

8.2.1 Configuration

	- Module -
MU100010A	10G Multirate Module
	- Options -
MU100010A-ES210	2 Years Extended Warranty Service
MU100010A-ES310	3 Years Extended Warranty Service
	- Basic Option (Software) -
MU100010A-x01	Up to 2.7G Dual Channel
	- Protocol Option (Software) -
Ethernet:	
MU100010A-x11	Ethernet 10G Single Channel
MU100010A-x12	Ethernet 10G Dual Channel
OTN:	
MU100010A-x51	OTN 10G Single Channel
MU100010A-x52	OTN 10G Dual Channel
MU100010A-x61	ODU Multiplexing
MU100010A-x62	ODU Flex
SDH/SONET:	
MU100010A-x81	STM-64 OC-192 Single Channel
MU100010A-x82	STM-64 OC-192 Dual Channel

8.2.2 External Interfaces

Test signal interface	SFP/SFP+:	+: 2 Slots SFF-8431, SFF-8472 compliant IEEE 802.3ae-2002, IEEE802.3-2008 compliant							
	RI45:	2 Soci	kets						
	1.9151	IEEE80)2.3-2008 10BASE-T. 10(BASE-TX, 1000BASE-T compliant					
		Auto N	1DI-X						
		10/100 Mbps Full/Half Duplex, 1000 Mbps Full Duplex							
	RJ48:	2 Socl	kets						
		ITU-T G.703 compliant							
	RTT βανταμι	4 ports							
	DANTAN.	ANSI DS1 102 compliant							
	BNC	4 nort	s						
	Bire.	ITU-T	G.703 compliant						
Simultaneous Measurement Port	2 ports								
Bit Rate	Stand	lard	Bit Rate	Interfaces					
	10BASE-T:		12.5 Mbit/s	RJ-45					
	100BASE-1	X:	125 Mbit/s	RJ-45					
	1000BASE	·T:	1.25 Gbit/s	RJ-45					
	100BASE-XX:		125 Mbit/s	SFP					
	1000BASE-XX:		1.25 Gbit/s	SFP					
	10GBASE-XX:		10.3125 Gbit/s	SFP+					
	STM-1/OC-3:		155.52 Mbit/s	SFP					
	STM-4/OC-12:		622.082 Mbit/s	SFP					
	STM-16/OC-48:		2488.32 Mbit/s	SFP					
	STM-64/OC-192:		9953.28 Mbit/s	SFP+					
	OTU1:		2.666057143 Gbit/s	SFP					
	OTU2:		10.70922532 Gbit/s	SFP+					
	OTU1e:		11.04910714 Gbit/s	SFP+					
	OTU2e:		11.09572785 Gbit/s	SFP+					
	OTU1f:		11.27008929 Gbit/s	SFP+					
	OTU2f:		11.31764241 Gbit/s	SFP+					
	E1:		2.048 Mbit/s	RJ-48/BNC					
	E3:		34.368 Mbit/s	BNC					
	E4:		139.264 Mbit/s	BNC					
	DS1:		1.544 Mbit/s	RTT Bantam					
	DS3:		44.736 Mbit/s	BNC					
	STM-1e/ST	S-3:	155.52 Mbit/s	BNC					
Bit rate offset range of	Relative to	<u>Bit Rate</u>	<u>e</u> :						
transmitter	PDH/DSn:	-125 t	o +125 ppm						
	SDH/SONE	T: -50 to	o +50 ppm						
	OTN	OTN -50 to +50 ppm							
	Ethernet:	-100	to +100 ppm						

Bit rate tolerance	Relative to Bit F	Rate:			
orreceiver	PDH/DSn: -1 SDH/SONET: -1 OTN -1	50 to + 00 to + 00 to +	150 ppm, 1 ppr 100 ppm, 1 ppr 100 ppm, 1 pp	m step m step m step	
	Ethernet: -1	00 to +	100 ppm, 1 pp	m step	
Optical Output	Bit Rate	Rei	fer to <u>Bit Rate</u> .		
Optical Input	Bit Rate	Ret	fer to <u>Bit Rate</u> .		
Electrical Output	1.5M/2M Output		1.5M/2M balan	iced ou	itput
	Bit Rate		Refer to Bit Ra	ate.	
	Pulse mask		ITU-T G.703 co	ompliar	nt
	Code/Interface (Balance)		1.544 Mbits/s		AMI/B8ZS Bantam 100Ω
			2.048 Mbits/s		HDB3 or AMI RJ-48 120Ω
	2M to 139/45/1	56M Ou	tput		
	Bit Rate		Refer to <u>Bit Ra</u>	<u>ate</u> .	
	Pulse mask		ITU-T G.703 co	ompliar	
	Code/Interface		2.048 Mbits/s		HDB3, BNC 75 Ω
	(Unbalance)		34.308 MDIUS		HDB3, BNC 75 Ω
			120 264 Mbit/s		B_{22} , BNC 75 Ω
			159.204 Mblus 155 520 Mbit/s	•	
	Return Loss (Unbalance)		ITU-T G.703 co	ompliar	nt
	10/100 /1000M	Output			
	Bit Rate		Refer to Bit Ra	ate.	
	Code/Interface		RJ-45 IEEE802.3-200	8 10BA	SE-T, 100BASE-TX, 1000BASE-T
Electrical Input	compliant				
	1.5M/2M Input	1 5 / / 1	Mbite /c		875 Bantam 100 O
	(Balance)	2 0 4 8	Mhits/s		RI-48 120 O
	Bit Rate	Refer	to Bit Rate.	11000,	11 40 120 12
		DS1 Sł	nort Haul:		
	(1.5M)	15 dB linear attenuation , 0 dB cable attenuation, i impedance			
		TERMIN	NATE: 36 dB cable att	enuatio	on nominal impedance
		DSX M 15 dB	ONITOR: to 25 dB linear	attenua	ation. nominal impedance
		BRIDG Up to 3	ED: 36 dB cable att	enuatio	on, high impedance
	Sensitivity (2M)	TERMINUUP to 4	NATE: 40 dB cable att	enuatio	on, nominal impedance
		MONIT	OR:		
		20 dB to 26 dB linear attenuation and up to 6 dB cable attenuation, nominal impedance 20 dB to 30 dB linear attenuation. 0 dB cable attenuation.			
		nomina BRIDG	al impedance FD:		
		Up to 4	 40 dB cable att	enuatio	on, high impedance

	2M to 139/45/156M	56M Input				
	Bit Rate	Refer to <u>Bit Rate</u> .				
	Code/Interface	2.048,34.368 Mbit/s	HDB3, BNC 75 Ω			
	(Balance)	44.736 Mbits/s	B3ZS, BNC 75 Ω			
		139.264,155.52 Mbits/s	CMI, BNC 75 Ω			
	Sensitivity (2.048Mbit/s)	TERMINATE: Up to 40 dB cable attenuation, nor	minal impedance			
		MONITOR: 20 dB to 26 dB linear attenuation a attenuation, nominal impedance 20 dB to 30 dB linear attenuation, nominal impedance	and up to 6 dB cable 0 dB cable attenuation,			
		BRIDGED:				
	Como iniciale a	Up to 40 dB cable attenuation, hig	n impedance			
	(34.368/44.736M)	Up to 12.0 dB cable attenuation, no	ominal impedance			
		20 dB linear attenuation and up to	12 dB cable attenuation,			
		nominal impedance 20 dB to 30 dB linear attenuation , nominal impedance	0 dB cable attenuation,			
	Sensitivity (139.264/155.52M)	TERMINATE: 52M) Up to 12.0 dB cable attenuation, nominal impedance MONITOR: 20 dB linear attenuation and up to 12 dB cable attenue				
		nominal impedance				
	10/100 /1000M Inp	put				
	Bit Rate Re	efer to <u>Bit Rate</u> .				
	Code/Interface RJ	-45 EE802.3-2008 10BASE-T, 100BASE-T	TX, 1000BASE-T compliant			
Return Loss	ITU-T G.703 comp	bliant				
Jitter generation	Optical interface:	ITU-T G.783 compliant	LT1404 compliant			
Jitter Tolerance	Optical interface: Electrical interface	ITU-T G.825, ITU-T G.825 ITU-T G.825, ITU-T G.825 ITU-T G.823, ITU-T G.824	L compliant compliant			
Rx Bit Rate	Bit Rate Ref	er to Bit Rate.				
counter	Accuracy Acc	ording to the <u>Internal Clock</u> of MT10	000A.			

8.2.3 Ethernet Measurements

Cable test Identifies failures on electrical cables like short-circuits or breaks of a wire pair and indicates the distance from the instrument to the fault.

Transmitter Clock Reference Clock

- Internal clock
- External clock
 - BITS
 - SETS
 - o 2MHz
- GPS
- Received clock
- IEEE1588v2

Refer to Bit Rate

Frequency deviation measurement

SyncE functionality Specify quality level (QL) of the transmitted Ethernet signal.

Analysis of QL indicated in received Ethernet signal. An alarm is raised on missing QL indications.

SyncE results

- SSM Rx count and rate
- SSM Tx count
- Indicated QL statistics
- SSF seconds

ESMC messages capture

• ESMC messages can be captured and exported in a Wireshark compatible format.

IEEE 1588v2 functionality

Timing master/slave

• Each port of the Ethernet interface can act as a timing master or a timing slave independently.

Supported modes: Multicast (native PTP) and Unicast (G.8265.1). When acting as master in Unicast (G.8265.1) mode, one slave is accepted at a time, other slaves are ignored. If the slave requires 32, 64 or 128 Sync messages per second, the IEEE 1588-2008 paragraph 7.7.2.1 concerning 90% confidence interval is not followed.

Configurable parameters (per port):

- Clock identity
- Port number
- Priority 1
- Priority 2
- Domain number
- Clock class
- Slave only mode
- Time source
- Encapsulation
- Announce receipt timeout
- Clock accuracy
- Clock step mode
- Announce interval
- Sync interval
- Minimum delay request interval

IEEE 1588 clock results:

- Clock state
- Announce count
- Sync count
- Follow-up count
- Delay request count
- Delay response count
- Delay follow-up count
- Peer delay request/response/response-follow-up counters
- Maximum/Minimum/Average offset
- Maximum/Minimum/Average offset deviation
- Maximum/Minimum/Average offset variance
- Maximum/Minimum/Average mean path delay
- Maximum/Minimum/Average peer mean path delay
- Maximum/Minimum/Average path delay variation

UTC time offset

• With a GPS signal present, the offset from UTC time is calculated.

Parent clock results:

• Identity and Port number.

Grand-master results:

- Identity
- Class
- Accuracy
- Priority 1
- Priority 2
- Announced- and observed offset variance.

Foreign master clock results (up to five clocks per port):

- Identity
- Port number and Announce count

The following IEEE 1588 events are counted and logged:

- Clock state transitions
 - State transition events
 - Faults and Changes in grand-master clock

IEEE 1588 messages can be captured and exported in a Wireshark compatible format.

Transmitter, Receiver

- Supported encapsulations (frame formats)
 - EtherType II (DIX v.2)
 - IEEE 802.3 with 802.2 (LLC1)
 - IEEE 802.3 with SNAP

Variable line rate traffic generation

• Up to full line rate

Transmitter Frame size

• From 44 bytes to 16,000 bytes

Receiver settings

- User-defined expected preamble length (3 to 15 bytes)
- User-defined IFG lower threshold * (8 to 15 bytes)
- User-defined Jumbo frame size upper limit (1519 to 16000 bytes)

*: Only for Ethernet 10/100/1000 Mbps (cannot use 10Gbps)

Traffic generator Line load profile

- Constant: 0.0008% 100%
- Ramp:
 - Line load: start, end, step (0.0001% resolution)
 - Duration: 3 to 3600 seconds
 - Ramp mode: Keep end line load, Repeat ramp, Invert ramp

Frame size profile

- Constant
- Stepped:
 - Frame size: start, end, step (to 16000 bytes)
 - Duration: 1 to 3600 seconds
- Random:
 - Frame size: start, end (to 16000 bytes),
 - User-defined TCP/UDP frame size upper limit (2048 bytes)

Traffic duration

- Continuous
- Seconds: 1 to 2,000,000,000
- Frames: 1 to 2,000,000,000

Unicast/broadcast

• User-defined traffic mix of unicast and broadcast frames

VLAN

• User-defined VLAN ID and VLAN priority

Address

• Configurable IP and Ethernet source and destination addresses (supports IPv4 and IPv6 addressing). Fixed, DHCP, DNS.

Flow control

- Generate pause frames
- Respond to pause frames

ARP

• Answer incoming ARP request On/Off

IP

- Fixed or incremented IP identifier
- User programmable DSCP/TOS byte

UDP/TCP

- User programmable UDP/TCP address
- UDP Checksum: automatic or fixed (null)
- TCP checksum: automatic

Status, Results Status

• Link status, RF, Signal present, Jabber detected, Frames present, Speed, Full or half duplex, Interface type, Local clock (Ethernet 1000), Pause capable and Asymmetric pause request (excluding 10Gbps), Link partner capabilities (excluding 10Gbps)

Resolution

 User-defined resolution for statistical measurements: 1, 2, 5, 10, 15, 30s, 1, 5, 15, 30 minutes, 1, 2, 4, 6, 12 hours.

Performance statistics

- Maximum/Minimum/Average utilization
- Maximum/Minimum/Average user and total throughput
- Maximum/Minimum/Average frame rate
- Maximum/Minimum/Average frame latency
- Maximum/Minimum/Average packet jitter

Frame statistics

- Total frames
- Total valid frames
- Unicast/multicast/broadcast frames
- Pause frame
- VLAN frame
- MPLS frames
- MPLS-TP frame
- PBB frame
- VLAN Max/Min level
- MPLS Max/Min level
- Fragmented frames
- Oversized and Undersized frames
- FCS errored frames
- Error symboled frames (Excluding 10Gbps)
- Code violation frames (For 10Gbps)
- Collisions (10/100 Mbps half duplex)
- Preamble Violations
- IFG violations
- Local Fault (For 10Gbps)
- Remote Fault (For 10Gbps)
- Last Received VLAN 1-8 (ID/Priority)
- Last Received MPLS 1-8 (Label/Priority/TTL)
- B-Tag, I-tag (ID/Priority)

Burst statistics

Disabled in case of the OTN client.

- Total frames in burst
- Good/Bursted frames
- Number of Bursts
- Maximum/Minimum/Average burst size

Frame distribution statistics

- Total valid/good frames
- 64 127 byte frames
 128 255 byte frames
- 256 511 byte frames
- 512 1023 byte frames
- 1024 1518 byte frames
- Total number of jumbo frames
- Maximum/Minimum/Average frame size

Filters

Up to 8 filter conditions can be defined. Each condition can filter on:

- IP or MAC source address
- IP or MAC destination address
- Broadcast address
- IEEE OUI value
- Encapsulation type
- VLAN ID
- VLAN tag priority
- MPLS
- MPLS-TP source/destination MAC
- PBB source/destination MAC
- PBB I-tag/B-tag

- TCP/UDP source and destination port
- User-defined pattern at a defined offset

Adjustable thresholds

- Utilization
- Throughput
- Errored frames
- Collision rate
- Unicast frames
- Multicast frames
- Broadcast frames
- Pause frames
- Fragmented frames Undersized frames
- Oversized frames
- FCS errored frames
- IFG violations (Ethernet 10/100/1000 Mbps)
- Preamble violations
- Difference between Tx and Rx

DHCP

- Show source IP address assigned by DHCP.
- Show current lease expire time.
- Show IP addresses of primary and secondary DNS server when obtained • by DHCP.
- **Error generation** IFG (For 10/100/1000 Mbps), FCS, Preamble, Error symbol
 - Alignment (For 10/100 Mbps)
 - Wrong IP checksum, fragmented IP, UDP with zero checksum
 - PRBS bit error, BERT sequence error

Alarm generation No link

- Local fault (For 10Gbps) ٠
- Remote fault

BER test Generation and detection of test patterns. Count of errors in received test pattern. Pattern generation:

- Unframed (layer 1)
- Framed with Ethernet (MAC) header (layer 2)
- Framed with Ethernet (MAC) header and IP header (layer 3)
- Framed with Ethernet (MAC) header, IP header and UDP/TCP header • (layer 4)

Test patterns:

- PRBS 9, PRBS 11, PRBS 15, PRBS 20, PRBS 23, PRBS 29, PRBS 31, HF test pattern, CRPAT, JTPAT, SPAT
- User-defined up to 16 bits. Length in step of 1 bit.

Detection of sequence errors and loss of sequence synchronization.

Frame loss count and frame loss seconds.

Throughput measurement: Maximum/Minimum/Average values are presented.

Test resolution

 User-defined up to resolution: 1, 2, 5, 10, 15, 30 sec, 1, 5, 10, 15, 30 minutes, 1, 2, 4, 6, 12 hours

Throughput may be calculated on 6 different layers: measurement

- Utilization layer
- Physical layer

Throughput

	 Physical layer excl. preamble Link layer Network layer Data layer 					
Service	Can be activated as part of the BER test:					
measurement	 Maximum/Average service disruption time, resolution 0.1 µsec Number of service disruptions 					
Ping test	For connectivity and configuration check.					
	 Round Trip Time (RTT) Supports IPv4 addressing Answer incoming Ping requests (On/Off) 					
Traceroute	Trace the IP route over the IP network.					
	 User-defined max no. of hops (1 to 255) Information per hop: Maximum/Minimum/Average ping time and number of ping timeouts 					
Ethernet OAM option	 Y.1731 (Service Layer OAM) IEEE 802.1ag (Connectivity layer OAM) and IEEE 802.3ah (Access Link OAM) 					
VLAN	Number of VLAN tag					
	 Up to 8 layers of VLAN can be inserted into the Ethernet frame. Only 1 level of VLAN is supported in ping, Traceroute and RFC2544 router latency tests. 					
	Parameters per VLAN tag					
	 EtherType 0x8100 (802.1Q), 0x88a8 (802.1ad), 0x9100 or 0x9200 User-defined VLAN ID, CFI and VLAN priority 					
	Status					
	 Indicator for detection of VLAN tagged frames 					
	Statistics					
	 Number of VLAN tagged frames Maximum number of VLAN layers detected 					
Ethernet MPLS	MPLS supported					
	 MPLS unicast is supported (EtherType 0x8847). Support for MPLS in BERT, RFC 2544 (excluding router latency) tests and general statistics 					
	Number of MPLS headers					
	• Up to 8 MPLS headers can be set by the user.					
	Parameters per MPLS header					
	 User-defined label, Exp and TTL fields in each MPLS header 					
	MPLS-TP support					
	 PWE (Pseudo Wire Emulation Edge-to-Edge) label (the RFC4448 control word) can be added. 					
	Status					

• Indicator for detection of MPLS frames and MPLS-TP

Statistics

	 Number of MPLS frames and MPLS-TP frames Maximum number of MPLS layers detected
Ethernet Multistream	Number of streams
	Up to 16 streams can be activated on the Ethernet line.
	Parameters per stream
	 Encapsulation (frame format) Line rate traffic load, up to full line rate Configurable IP and Ethernet source and destination addresses (supports IPv4 and IPv6 addressing) User-defined traffic mix of unicast and broadcast frames Adjustable frame size from 44 bytes to 16000 bytes Frame sizes may be set to constant, stepped or random length. User programmable VLAN ID and VLAN priority User programmable DSCP/TOS byte User programmable UDP/TCP address
	In stream 1 a BER test can be made.
	Statistics
	Available information per stream:
	 Frame loss count/rate Frames and bytes received Frames and bytes transmitted Throughput Latency/Jitter
RFC2544	Switch/router test and Single ended network test modes:
installation and commissioning	 Throughput Frame loss Latency or packet jitter Back-to-back frames (burstability)
	End-to-end network test mode (two Network Master Pros in a master-slave setup)
	 Throughput Frame loss Back-to-back frames (burstability)
	Router latency test mode: IP ping based latency test or packet jitter.
	For RFC2544 throughput measurement the user can choose to make the measurement for:
	 Physical layer Physical layer excl. preamble Link layer

- Network layer
- Data layer
- Average or maximum values

Service Activation Service Activation Test is an out-of-service test to assess the proper **Test (Y.1564)** configuration and performance of Ethernet services.

- Test up to 8 services
- Color-Aware and Non-Color-Aware in combinations (IP DSCP or VLAN PCP)

• GPS timing synchronization

Two test modes:

- One-way (uni- or bi-directional, symmetrical or asymmetrical)
- Round-trip

Service Configuration Test:

- With subtests for:
 - Committed Information Rate
 - Excess Information Rate
 - Traffic Policing
 - Committed Burst Size
 - Excess Burst Size
- Step duration: 1 sec to 60 sec (user programmable)
- Number of steps: 1 to 10 (user programmable)
- Slope: rising or falling
- Results:
 - Pass/Fail indication
 - IR (Maximum/Minimum/Average)
 - FL (Count/FLR)
 - FTD and FDV (Maximum/Minimum/Average/Current (during measurement))

Service Performance Test:

- All services tested simultaneously at CIR
- Duration: 15 minutes, 2 hours, 24 hours or customer programmable
- Results:
 - Pass/Fail indication
 - IR (Maximum/Minimum/Average)
 - FL (Count/FLR)
 - FTD and FDV (Maximum/Minimum/Average/Current (during measurement))
 - AVAIL (%)
 - Unavail (sec)

Verification against Service Acceptance Criteria:

- Information Rate
- Frame Transfer Delay
- Frame Delay Variation
- Frame Loss Rate
- Availability

Reflector mode The following parameters are user-selectable:

- Swap all MAC addresses or one specific MAC address
- Swap IP addresses
- Swap port numbers on UDP/TCP frames
- Force ACK on TCP frames

8.2.4 SDH/SONET/PDH

SONET/SDH switchable.

Number of ports Max. 2

Transmitter Clock Reference Clock

- Internal clock
- External clock
 - BITS
 - SETS
 - 2MHz
- Received clock

Frame format	 STM-1/STM-1e/OC-3/STS-3 STM-4/OC-12 STM-16/OC-48 STM-64/OC-192
Measurement Parameter	Interval
Farameter	ls, 2s, 5s, 10s, 15s, 30s, Iminute, 5minutes, 10minutes, 15minutes, 30minutes, Ihour, 2hours, 4hours, 6hours, 12hours, No intervals Start Key Action Immediate Start at(year-month-day, hour-minute-second) Stop Function Manual Stop Stop at (year-month-day, hour-minute-second) Duration (1second to 99days 23hour-59minute-59second)
8.2.4.1 SDH	
SDH Mappings	STM-64 - AU4-64c - VC4-64c - Bulk STM-64/STM-16 - AU4-16c - VC4-16c - Bulk STM-64/STM-16/STM-4 - AU4-4c - VC4-4c - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-3 - VC-3 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-3 - VC-3 - DS3 STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-3 - VC-3 - DS3 STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-3 - VC-3 - E3 STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-12 - VC-12 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-12 - VC-12 - E1 (Async/Sync) STM-64/STM-16/STM-4/STM-1/STM-1e - AU-4 - VC-4 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - DS3 STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-12 - VC-12 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-12 - VC-12 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - Bulk STM-64/STM-16/STM-4/STM-1/STM-1e - AU-3 - VC-3 - TU-11 - VC-11 - DS1 (Async/Sync)
Dummy channel handling	Copy, Unequipped (For AU only)
Test patterns	 PRBS: 2⁹-1, 2¹¹-1, 2¹⁵-1, 2²⁰-1, 2²³-1, 2²⁹-1,2³¹-1 (Normal/Inverse) Fixed :User Pattern, All0, All1, Alternating 1:1, Alternating 1:3, Alternating 1:7, 2 in 8 User Pattern : 32 bit, 2048 bit
Preset data	OH Preset data
	 SOH : All bytes except B1, B2, H1, H2 and H3 byte VC-4/VC-3 POH : All bytes except B3 VC-12/VC-11 POH : All bytes except BIP-2
	Path trace Setting: J0, J1, J2 (Ascii data, 16 bytes/64 bytes)
Tandem connection	Off, N1(VC-4), N1(VC-3), N2(VC-12), N2(VC-11)

Frequency Offset ±50 ppm 1 ppm step

Alarm Insertion	Item
	 LOS, LOF, OOF, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-TIM, HP-PLM, HP- UNEQ, HP-RDI, TU-AIS, TU-LOP, TU-LOM, LP-TIM, LP-UNEQ, LP-RDI, LP-PLM, LSS, TC-UNEQ, TC-LTC, TC-TIM, TC-AIS, TC-RDI, TC-ODI
	Insertion :
	 Permanent, Alternate (Excluding LOS, OOF and LSS) Permanent (For LOS, OOF and LSS)
	Alternate :
	 Alarm length : 1 to 8000 (Frame) Normal length : 1 to 8000 (Frame)
Error Insertion	ltem
	 A1A2, B1, B2, MS-REI, B3, HP-REI, V5/B3, LP-REI, TC-IEC, TC-REI, TC-OEI, TC- BIP-2, ERR-TRANS, Pattern error
	Insertion :
	 Manual, Rate, Alternate (Excluding ERR-TRANS) Manual, Rate (For ERR-TRANS)
	Manual :
	 Burst length : 1 to 8000 (bit) (Excluding Pattern error) Burst length : 1 to 4000 (bit) (For Pattern error)
	Rate:
	• $1*10^{-3}$, $1*10^{-4}$, $1*10^{-5}$, $1*10^{-6}$, $1*10^{-7}$, $1*10^{-8}$, $1*10^{-9}$, $1*10^{-10}$ The available highest rate varies depending on the error item.
	Alternate :
	 (Excluding Pattern error) Error : 1 to 8000 (Frame) Normal : 1 to 8000 (Frame) (For Pattern error) Error : 1 to 4000 (bit) Normal : 100 to 4000 (bit)
Pointer	AU-4, AU-3, TU-3, TU-12, TU-11
	Test Sequence :
	 No Test Sequence Single Alternating Regular + Double Regular + Missing Double Alternating
	Movement :
	 Positive Negative Burst: 1 to 100
	Jump :

NDF: Including NDF or Excluding NDF
Pointer Value: 0 to 782(AU-4/AU-3) or 764(TU-3) or 139(TU-12) or 103(TU-11)

Error/Alarm detection	Alarm detection
	 LOS, LOF, OOF, MS-AIS, MS-RDI,AU-AIS, AU-LOP, HP-PLM, HP-TIM, HP-RDI, HP-UNEQ, TU-AIS, TU-LOP, TU-LOM, LP-PLM, LP-TIM, LP-RDI, LP-UNEQ, TC- AIS, HP-TC-RDI, HP-TC-ODI, HP-TC-UNEQ, TC-TIM, TC-LTC, TC-AIS, TC-RDI, TC-ODI, TC-UNEQ, LSS
	Display : Seconds (Resolution : 1 second)
	Error Detection
	 A1A2, B1, B2, MS-REI, B3, HP-REI, V5/B3, LP-REI, TC-IEC, TC-BIP-2, TC-REI, TC-OEI, Pattern error, Pattern block error for G.826
	Display : Count, Ratio
Monitor	Signal level:
	 dBm (Excluding STM-1e) dB (For STM-1e)
	Deviation: ppm (Resolution: 1 ppm)
	Bit rate: bit/s
Pointer analyze	Pointer value: AU-PTR, TU-PTR
	Element : Negative, Positive
	Graph : Pointer movement
OH Capture	Item
	 SOH: 64 Frames POH: 64 Frames Pathtrace: J0/J1/J2 (Displays in ascii characters)
	Timing
	SingleRepeat : Update period 1s
Through Mode	Mode :
	 Through Rx OH Overwrite SOH, A1/A2, K1/K2, S1, DCC1-3, DCC4-12, J0, SOH 1byte
	Stimuli
	 Alarm : LOS, LOF, OOF, MS-RDI Available alarms depend on Through mode setting. Error : A1A2, B1, B2, MS-REI, ERR-TRANS Available errors depend on Through mode setting. Insertion: refer to <u>Alarm Insertion</u> and <u>Error Insertion</u>
APS	APS (Automatic Protection Switching) Measurement
	 Trigger: LOS, LOF, OOF, MS-AIS, MS-RDI, APS Switchover, AU-AIS, AU-LOP, HP-TIM, HP-PLM, HP-UNEQ, TU-LOM, TU-AIS, TU-LOP, LP-TIM, LP-PLM, LP-UNEQ, A1A2, B1, B2, MS-REI, B3, V5/B3 Max reference duration: 0.000 to 10000.000 ms Result: Average time, Maximum time, Minimum time
	APS Protocol analyze
	 APS configuration :Ring or Linear Ring : Short Path, Long Path

	 APS Protocol Request : The value of K1, K2 byte is sent depending on selected type. APS Interpretation : Number, Elapsed Time
Delay measurement	Measurement Mode : Single, Repeat
	Measurement Period : 0.5, 1, 2, 5,10 s
	Measurement Range : Up to 10 000 000.000 μs / resolution 0.1 μs , >Timeout
SDH Performance Measurement	 Setup : G826, G.828+G.829, M.2101.1(M2100) Allocation Mux Allocation 0 to 100% VC-4 Allocation 0 to 100% VC-3 Allocation 0 to 100% VC-11/VC-12 Allocation 0 to 100% Time period : 15minutes, 1hour, 2hour, 24hour, 7days (only M.21001) Result : ES, SES, BBE, UNAV Display : Count, Ratio
Tributary Scan	Displays the alarm status of all channels in a specified layer.
	Green (No alarm), Red (Alarm occurring), Gray (Not applied)
8.2.4.2 SONET	
SONET Mappings	OC-192 - STS-192c - STS-192c SPE - Bulk OC-192/OC-48 - STS-48c - STS-48c SPE - Bulk OC-192/OC-48/OC-12 - STS-12c - STS-12c SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - E4 OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - TU-3 - VC-3 - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - TU-3 - VC-3 - DS3 OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - TU-3 - VC-3 - E3 OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - TU-3 - VC-3 - E3 OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-12 - VT-12 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-12 - VT-12 SPE - E1 (Async/Sync) OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-3c - STS-3c SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - DS3 OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-12 - VT-12 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-12 - VT-12 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-12 - VT-12 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-12 - VT-12 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-12 - VT-12 SPE - E1 (Async/Sync) OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-11 - VT-11 SPE - Bulk OC-192/OC-48/OC-12/OC-3/STS-3 - STS-1 - STS-1 SPE - VT-11 - VT-11 SPE - DS1/J1 (Async/Sync)
Dummy channel handling	Copy, Unequipped (For STS only)
Test patterns	 PRBS: 2⁹-1, 2¹¹-1, 2¹⁵-1, 2²⁰-1, 2²³-1, 2²⁹-1,2³¹-1 (Normal/Inverse) Fixed :User Pattern, All0, All1, Alternating 1:1, Alternating 1:3, Alternating 1:7, 2 in 8 User Pattern : 32 bit, 2048 bit
Preset data	OH Preset data
	 TOH : All bytes except B1, B2, H1, H2 and H3 byte STS-3c/STS-1 POH : All bytes except B3 VT-2/VT-1.5 POH : All bytes except BIP-2

 Tandem
 Off, Z5(STS-3c), Z5(STS-1), Z6(VT-2), Z6(VT-1.5)

connection

Frequency Offset ±50 ppm 1 ppm step

Alarm Insertion Item

• LOS, LOF, OOF, AIS-L, RDI-L, AIS-P, LOP-P, TIM-P, PLM-P, UNEQ-P, RDI-P, AIS-V, LOP-V, LOM-V, TIM-V, UNEQ-V, RDI-V, PLM-V, LSS, TC-UNEQ, TC-LTC, TC-TIM, TC-AIS, TC-RDI, TC-ODI

Insertion :

- Permanent, Alternate (Excluding LOS, OOF and LSS)
- Permanent (For LOS, OOF and LSS)

Alternate :

- Alarm length : 1 to 8000 (Frame)
- Normal length : 1 to 8000 (Frame)

Error Insertion Item

 A1A2, B1, B2, REI-L, B3, REI-P, V5/B3, REI-V, TC-IEC, TC-REI, TC-OEI, TC-BIP-2, ERR-TRANS, Pattern error

Insertion :

- Manual, Rate, Alternate (Excluding ERR-TRANS)
- Manual, Rate (For ERR-TRANS)

Manual:

- Burst length : 1 to 8000 (bit) (Excluding Pattern error)
- Burst length : 1 to 4000 (bit) (For Pattern error)

Rate:

• $1*10^{-3}$, $1*10^{-4}$, $1*10^{-5}$, $1*10^{-6}$, $1*10^{-7}$, $1*10^{-8}$, $1*10^{-9}$, $1*10^{-10}$ The available highest rate varies depending on the error item.

Alternate :

- (Excluding Pattern error)
 error : 1 to 8000 (Frame)
 - Normal : 1 to 8000 (Frame)
- (For Pattern error)

STS-3c, STS-1, TU-3, VT-2, VT-1.5

- Error : 1 to 4000 (bit)
 - Normal : 100 to 4000 (bit)

Pointer

Test Sequence :

- No Test Sequence
- Single Alternating
- Regular + Double
- Regular + Missing
- Double Alternating

Movement :

- Positive
- Negative
- Burst: 1 to 100

Jump :

	 NDF: Including NDF or Excluding NDF Pointer Value: 0 to 782(STS-3c/STS-1) or 764(TU-3) or 139(VT-2) or 103(VT-1.5) 			
Error/Alarm	Alarm detection			
detection	 LOS, LOF, OOF, AIS-L, RDI-L, AIS-P, LOP-P, TIM-P, PLM-P, UNEQ-P, RDI-P, AIS-V, LOP-V, LOM-V, TIM-V, UNEQ-V, RDI-V, PLM-V, TC-UNEQ, TC-LTC, TC- TIM, TC-AIS, TC-RDI, TC-ODI, LSS 			
	Display : Seconds (Resolution : 1 second)			
	Error Detection			
	 A1A2, B1, B2, REI-L, B3, REI-P, V5/B3, REI-V, TC-IEC, TC-BIP-2, TC-REI, TC- OEI, Pattern error, Pattern block error for G.826 			
	Display : Count, Ratio			
Monitor	Signal level:			
	 dBm (Excluding STS-3) dB (For STS-3) 			
	Deviation: ppm (Resolution: 1ppm)			
	Bit rate: bit/s			
Pointer analyze	Pointer value: STS-PTR, VT-PTR			
	Element : Negative, Positive			
	Graph : Pointer movement			
OH Capture	ltem			
	 TOH: 64 Frames POH: 64 Frames Pathtrace:J0/J1/J2 (Displays in ascii characters) 			
	Timing			
	SingleRepeat : Update period 1s			
Through Mode	Mode :			
	 Through Rx OH Overwrite TOH, A1/A2, K1/K2, S1, DCC1-3, DCC4-12, J0, TOH 1byte 			
	Stimuli			
	 Alarm : LOS, LOF, OOF, RDI-L Available alarms depend on Through mode setting. Error : A1A2, B1, B2, REI-L, ERR-TRANS Available errors depend on Through mode setting. Insertion: refer to <u>Alarm Insertion</u> and <u>Error Insertion</u>. 			
APS	APS (Automatic Protection Switching) Measurement			
	 Trigger : LOS, LOF, OOF, AIS-L, RDI-L, APS Switchover, AIS-P, LOP-P, TIM-P, PLM-P, UNEQ-P, LOM-V, AIS-V, LOP-V, TIM-V, PLM-V, UNEQ-V, A1A2, B1, B2, REI-L, B3, V5/B3 Max reference duration: 0.000 to 10000.000 ms Result : Average time, Maximum time, Minimum time 			
	APS Protocol analyze			
	APS configuration :Ring or Linear			
	 Ring : Short Path, Long Path Linear : 1+1 architecture, 1:n architecture APS Protocol Request : The value of K1, K2 byte is sent depending on selected type. APS Interpretation : Number, Elapsed Time 			
-------------------------------------	--	--	--	--
Delay	Measurement Mode : Single, Repeat			
measurement	Measurement Period : 0.5, 1, 2, 5,10 s			
	Measurement Range : Up to 10 000 000.000 μs / resolution 0.1 μs , >Timeout			
SONET Performance Measurement	 Setup : G826, G.828+G.829, M.2101.1(M2100) Allocation Mux Allocation 0 to 100% STS-3c Allocation 0 to 100% STS-1 Allocation 0 to 100% VT-2/VT-1.5/VC-12 Allocation 0 to 100% Time period : 15minutes, 1hour, 2hour, 24hour, 7days (only M.2101.1) Result : ES, SES, BBE, UNAV Display : Count, Ratio 			
Tributary Scan	Displays the alarm status of all channels in a specified layer.			
	Green (No alarm), Red (Alarm occurring), Gray (Not applied)			
8.2.4.3 PDH				
Number of ports	Max. 2			
Frame format	Non PCM frame Bit rate : Refer to <u>Bit Rate</u> .			
	Framed Bit rate (Format)			
	 E1 2.048Mbit/s (30,31ch with or without CRC4, Sa-bit, CAS) E3 34.368Mbit/s (G.751) E4 139.264Mbit/s (G.751) DS1 1.544Mbit/s (T1.107, SF/ESF/Japan ESF, CAS) DS3 44.736Mbit/s (T1.107, M13/C-bit) 			
	Mux/DeMux			
	 E1 n*64kbit/s DS1 n*64kbit/s or n*56kbit/s 			
BER Test patterns	PRBS:			
	E1			
	2 ⁶ -1, 2 ⁷ -1, 2 ⁹ -1, 2 ¹¹ -1, 2 ¹⁵ -1, 2 ²⁰ -1, 2 ²³ -1, QRSS 11, QRSS 20 E3/E4			
	2^{9} -1, 2^{11} -1, 2^{15} -1, 2^{20} -1, 2^{23} -1, 2^{29} -1, 2^{31} -1, QRSS 20 (2^{29} -1 and 2^{31} -1 are only available for E4.)			
	DS1/DS3 2 ⁹ -1, 2 ¹¹ -1, 2 ¹⁵ -1, 2 ²⁰ -1, 2 ²³ -1, 2 ²⁹ -1, 2 ³¹ -1, QRSS 20			
	Fixed : User Pattern (32bis, 2048bits), All0, All1, 1 in 1, 1 in 3, 1 in 7, 3 in 24, Fox Pattern			
	(Fox Pattern is not available for E4.)			
	Logic : Normal, Inverse			
Line build out	DS1 0 dB -7 5 dB -15 dB -22 5 dB 1-133 ft 133-266 ft 266 300 ft 300 522 ft			
	533-655 ft			

	DS3	High-0 ft DSX-450 ft
Alarm Incortion	Itom	
Alarminserdon		
	EI	No Signal, AlS, No Frame, Distant(RDI) Alarm, Pattern sync loss, No CAS MFAS, Distant(RDI) MF Alarm
	E3/4	No Signal, AlS, No Frame, Distant(RDI), Pattern sync loss
	DSI	LOS, AIS (Blue), RAI, OOF, LLS
	DS3	LOS, AIS (Blue), RAI, LOF, Idle, LSS
Error Insertion	ltem	
	E1	FAS, FAS and NFAS, FAS word, CRC4, CRC4 MFAS, Code, Pattern error,
	E3/E4	CAS MFAS, E-Bit, Pattern slip, Frame slip, Transparent
	DS1	Frame, Code, Pattern error, Pattern slip (Code is only available for E3.)
	DS3	Pattern error, Pattern slip, CRC-6, F-Bit, S-Bit, BPV, EXZ
		Pattern error, Pattern slip, FEBE, C-Bit, F-Bit, P-Bit, BPV
	Timin	ig : Manual, Burst
Error/Alarm detection	Alarm	n detection
	E1	LOS, AIS, No Frame, No CRC4 MF, Distant, No sync, No CAS MF, Distant MF
	E3/E4	LOS, AIS, No Frame, Distant, No Sync
	DS1	LOS, AIS, OOF, RAI, LLS
	DS3	
	Dicol	av · Second
	Error	Detection
	F1	
	E3/E4	FAS, Pattern error, CRC4, CRC4 MFAS, E-bit, Code, Pattern slip, Frame slip, Pattern block error for G.826
	L3/L4	FAS, Code, Pattern error, Pattern slip, Pattern block error for G.826 (Code is only available for E3.)
	DSI	F-Bit, Pattern, CRC-6, S-Bit, BPV, Pattern slip, EXZ, Pattern block error for G.826
	055	BPV, Pattern error, Pattern slips, Parity, C-bit, F-bit, FEBE, Pattern block error for G.826
	Displa	ay : Count, Ration
Error Performance	G.821	J/G.826/M.2100 analysis of the received signal
Result	Statu	S
	Curre	nt information on:
	•	Alarms and errors

- Input level indication
- Actual bit rate
- Frequency deviation
- E1: CAS bits, FAS/non FAS bits
- DS1: CAS bits, F-Bit, S-Bit
- DS3: F-bitsRound trip delay
- APS switching time (Only available in case of E1 or DS1.)

8.2.5 OTN

8.2.5.1 OTN Setup

Frame Format	OTU2, OTU1e,	OTU2e,	OTU1f,	OTU2f (opt-x51	or opt-x52)
Frame Format	OTU2, OTU1e,	OTU2e,	OTU1f,	OTU2f (opt-x51	or opt-x52)

OTU1 (opt-x01)

Transmitter Clock Internal, External (BITS, SETS, 2MHz), Received

Through mode Transparent, OH Overwrite Thr. (ALL OTU/ODU/OPU OH)

Mapping OTU2 (Client PRBS)

OTU2-ODU2/OPU2-PRBS OTU2-ODTU2.1-ODU0/OPU0-PRBS OTU2-ODTU12(PT20,21)-ODU1/OPU1-PRBS OTU2-ODTU12(PT20,21)-ODU1/OPU1-ODTU01-ODU0/OPU0-PRBS OTU2-ODTU2.ts-ODUflex-PRBS

OTU2 (Client Ethernet)

OTU2-ODTU2.1-ODU0/OPU0-GbE OTU2-ODTU12(PT20,21)-ODU1/OPU1-ODTU01-ODU0/OPU0-GbE

OTU2 (Client SDH/SONET)

OTU2-ODU2/OPU2-STM64/STS192 OTU2-ODTU2.1-ODU0/OPU0-STM4/STS12 OTU2-ODTU2.1-ODU0/OPU0-STM1/STS3 OTU2-ODTU12(PT20,21)-ODU1/OPU1-STM16/STS48 OTU2-ODTU12(PT20,21)-ODU1/OPU1-ODTU01-ODU0/OPU0-STM4/STS12 OTU2-ODTU12(PT20,21)-ODU1/OPU1-ODTU01-ODU0/OPU0-STM1/STS3

OTU1 (Client PRBS)

OTU1-ODU1/OPU1-PRBS OTU1-ODTU01-ODU0/OPU0-PRBS

OTU1 (Client Ethernet)

OTU1-ODTU01-ODU0/OPU0-GbE

OTU1 (Client SDH)

OTU1-ODU1/OPU1-STM16/STS48 OTU1-ODTU01-ODU0/OPU0-STM4/STS12 OTU1-ODTU01-ODU0/OPU0-STM1/STS3

OTU1e/2e (Client PRBS)

OTU1e-ODU1e/OPU1e-PRBS OTU2e-ODU2e/OPU2e-PRBS

OTU1e/2e (Client Ethernet)

OTU1e-ODU1e/OPU1e-10GbE OTU2e-ODU2e/OPU2e-10GbE

OTU1f/2f (Client PRBS)

OTU1f-ODU1f/OPU1f-PRBS OTU2f-ODU2f/OPU2f-PRBS

Client Signals	Client Signals Refer to Section Ethernet and SDH/SONET.
Test Pattern	PRBS : 2^9 -1, 2^{11} -1, 2^{15} -1, 2^{20} -1, 2^{23} -1, 2^{29} -1, 2^{31} -1 with polarization Normal / Inverted User Pattern : 32bits, 2048bits
Measurement channel	Dummy (Unused), Copy Tributary Port and Slot can be configured in ODTU mapping.
FEC Encode/Decode	RS(255,239) described in ITU-T Rec. G709, No FEC
OH Edit	All OTU, ODU bytes except MFAS and BIP8 TTI, FTFL bytes with multi-frame manner
TTI measurement	Condition for detecting TIM can be selected. TCM measurement On/Off
MSIM Detection	Expected MSI bytes are set from Tx Data or Received Data.

8.2.5.2 OTN Stimuli

Alarm Insertion	OTU, ODU
	OTU-AIS, OOF/LOF, OOM/LOM, SM-TIM, SM-BIAE, SM-BDI, SM-IAE, ODU-AIS, ODU-OCI, ODU-LCK, PM-TIM, PM-BDI, TCMi-TIM, TCMi-BIAE, TCMi-BDI, TCMi-IAF, TCMi-I TC (i=1-6)
	Multiplexed ODU
	OOF/LOF, OOM/LOM, ODU-AIS, ODU-OCI, ODU-LCK, PM-TIM, PM-BDI
	Client
	Client-AIS, CSF
	Single, Burst, Alternate, All
Error Insertion	OTU, ODU
	Bitall, FAS, MFAS, SM-BIP8, SM-BEI, PM-BIP8, PM-BEI, TCMi-BIP8, TCMi-BEI
	(I=1-6), Uncorrectable Error, Correctable Error Multiplexed ODU
	FAS, PM-BIP8, PM-BEI
	GFP
	cHEC, tHEC, Superblock CRC
	Client
	Bit Error
	Insertion timing
	Single, Burst, Alternate, Rate, Rate (Random for Bitall), All
Frequency Offset	-50 ppm to +50 ppm 1 ppm step
Payload Offset	Movement type
	AMP
	Burst Insertion (Positive(+1), Positive(+2), Negative (-1)), Offset (ppm)
	GMP Offset (nnm)
	Offset
	AMP
	-131 ppm to +83 ppm (Depending on mapping configuration) 0.1 ppm step
	-150 ppm to +150 ppm 0.1 ppm step
	Error insertion for GMP
	CRC8, CRC5, Invalid JC1, Invalid JC2, Invalid JC1 & JC2

Error Insertion Timing Single

8.2.5.3 OTN Measurement

Alarm Detection	OTU, ODU LOS, OTU-AIS, LOF, OOF, LOM, OOM, SM-TIM, SM-BIAE, SM-BDI, SM-IAE, ODU-AIS,ODU-OCI, ODU-LCK, PM-TIM, PM-BDI, MSIM, TCMi-TIM, TCMi-BIAE, TCMi-BDI, TCMi-IAE, TCMi-LTC (i=1-6) Multiplexed ODU LOFLOM, OOF, OOM, ODU-AIS,ODU-OCI, ODU-LCK, PM-TIM, PM-BDI, MSIM Client Client-AIS, PLM, CSF, LSS					
Error Detection	OTU, ODU FAS, MFAS, SM-BIP8, SM-BEI, FEC Corrected, FEC Uncorrectable, PM-BIP8, PM-BEI, TCMi-BIP8, TCMi-BEI (i=1-6) Multiplexed ODU FAS, MFAS, PM-BIP8, PM-BEI GFP CHEC corrected, cHEC uncorrectable, tHEC corrected, tHEC uncorrectable, CSF Signal, CSF Sync., Invalid GFP Frame, Superblock CRC Client Bit Error					
Justification analysis	Coun AMP GMP	t Positive(+1), Positive(+2), Negative (-1), offset(ppm) CRC8 Error, CRC5 Error, Inc, Inc>1, Inc>2, Inc Over, Dec, Dec>1, Dec>2, Dec Over, offset(ppm), Cm(t) Max, Cm(t) Min				
OH Capture	OTU/0 TTI by Upda	DDU/OPU OH, Multiplexed ODU/OPU OH tes, FTFL bytes with Multi-frame Manner te timing Repeat 1sec, Single				
APS Measurement	Resul Trigge Meas Error	t : Switching Time Start Trigger, Stop Trigger urement Range 0.001 to 10,000 ms Free Period 1,10,100,200,300,400,500,600,700,800,900 and 1000ms				
OTN Performance Measurement	Standard ITU-T Rec. G.8201, M.2401(M.2110)					
Tributary Scan	n Detected Alarms OTU-AIS, LOF, OOF, LOM, OOM, SM-BIAE, SM-BDI, SM-IAE, ODU-AIS, OI OCI, ODU-LCK, PM-BDI, LOFLOM					
Round Trip Delay	Resu	t : RTD Time				
	Meas Meas	urement Range 0.5sec, 1sec, 2sec, 5sec, 10sec urement Timing Single, Repeat				

8.2.6 Environment Performance

Battery operating	Operating time: 4 hours (Typ.)				
ume	25°C, Depe	ending on operating condition			
Temperature and Humidity range	Operating:	0° C to +50°C, \leq 85%RH (non-condensing)			
	Storage:	-30°C to +60°C, \leq 90%RH (Excluding battery and AC adapter) -20°C to +50°C, \leq 90%RH (Including battery and AC adapter) (non-condensing)			
Laser Safety	IEC 60825-	1:2007 Class 1			
	FDA 21CFF Notice No.5	1040.10 and 1040.11 except for deviations pursuant to Laser 50, dated 2007-June-24.			
ЕМС	EN61326-1	N61326-1 and EN61000-3-2.			
LVD	EN61010-1	L.			
8.2.7 Mechani	cal Perf	ormance			

- Size MU100010A only: 163(H) x 257.6 (W) x 38.5(D) (Excluding projections) When combined to MT1000A: 163(H) x 257.6 (W) x 77(D) (Excluding projections)
- MassMU100010A only: 1.1 kg max.When combined to MT1000A: 2.7 kg max. (Including battery (G0301A))

8.3 Optical Modules

Up to 2 optical modules can be installed.

Correct functionality can only be guaranteed with optical modules purchased from Anritsu for the MU100010A.

Safety measures for laser products

Optical modules for the MU100010A comply with optical safety standards in IEC 60825-1.

Specifications Specification of optical modules purchased from Anritsu for the MU100010A (each with 1 transmitter and 1 receiver) with LC connectors (subject to change without further notice):

Model/Order No.	Description (Approx. Distance)	Min. Input Sensitivity	Input Wavelength	Output Power	Output Wavelength
G0311A 1G 850 nm SX SFP	1000BASE - SX 850 nm Multi mode (0.5 km)	-17 dBm	770 to 860 nm	-9.5 to - 3 dBm	830 to 860 nm
G0312A 1G 1310 nm LX SFP	1000BASE - LX 1310 nm Single mode (10 km)	-18 dBm	1260 to 1580 nm	-10 to - 3 dBm	1260 to 1360 nm
G0313A 1G 1550 nm ZX SFP	1000BASE - ZX 1550 nm Single mode (80 km)	-23 dBm	1260 to 1580 nm	-2 to 5 dBm	1480 to 1580 nm
G0314A 100 M LX 1310 nm SM SFP	100BASE - LX 1310 nm Single mode (15 km)	-28 dBm	1270 to 1600 nm	-15 to - 8 dBm	1261 to 1360 nm
G0315A 10G LR/LW 1310 nm SFP+	10GBASE - LR 1310 nm Single mode (10 km)	-14.4 dBm	1260 to 1565 nm	-6 to -1 dBm	1290 to 1330 nm
G0316A 10G ER/EW 1550 nm 40 km SFP+	10GBASE - ER 1550 nm Single mode (40 km)	-15.8 dBm	1260 to 1565 nm	-3 to 3 dBm	1530 to 1560 nm
G0318A 10G ZR/ZW 1550 nm 80 km SFP+	G0318A .0G ZR/ZW 1550 nm 80 km SFP+ 10GBASE - ER 1550 nm Single mode (80 km)		1260 to 1565 nm	0 to 5 dBm	1525 to 1565 nm
G0319A Up to 2.7G 1310 nm 15 km SFP	STM-1/-4/-16 short haul, 1310 nm (15 km)	-18 dBm	1270 to 1580 nm	-5 to 0 dBm	1260 to 1360 nm
G0320A Up to 2.7G 1310 nm 40 km SFP	STM-1/-4/-16 long haul, 1310 nm (40 km)	-27 dBm	1270 to 1580 nm	-2 to 3 dBm	1280 to 1335 nm
G0321A Up to 2.7G 1550 nm 80 km SFP	1A G 1550 m SFP STM-1/-4/-16 long haul, 1550 nm (80 km)		1270 to 1580 nm	-2 to 3 dBm	1500 to 1580 nm
G0322A 1G/2G/4G FC 1310 nm SFP 1GFC, 2GFC, 4GFC 1310 nm (10 km)		-18 dBm	1260 to 1360 nm	-8 to 0 dBm	1260 to 1360 nm
G0323A 1G/2G/4G FC 1550 nm SFP	1GFC, 2GFC, 4GFC 1550 nm (40 km)	-18 dBm	1470 to 1600 nm	0 to 5 dBm	1510 to 1590 nm
G0328A 1G/2G/4G FC 850 nm SFP		-15 dBm	830 to 860 nm	-9 to 0 dBm	830 to 860 nm
G0329A 10G LR 1310 nm SFP+	10GBASE - LR 1310 nm Single mode (10 km)	-14 dBm	1260 to 1355 nm	-8.2 to 0.5 dBm	1260 to 1355 nm
G0332A 100 M FX 1310 nm MM SFP	100BASE-FX 1310 nm Multi mode (2 km)	-31 dBm	1270 to 1600 nm	-20 to - 15 dBm	1280 to 1380 nm
G0333A 10G SR/SW 850 nm SFP+	10GBASE - SR 850 nm Multi mode (0.3 km)	-11.1 dBm	840 to 860 nm	-7.3 to - 1 dBm	840 to 860 nm

9 Support

This chapter contains information about general maintenance of the Network Master. It also contains information about how to obtain support or service assistance.

9.1 Maintenance and Cleaning

This section contains information about general maintenance and cleaning of the Network Master.

9.1.1 Maintenance

The Network Master does not require any regular adjustments.

Using the Network Master in a normal environment and under normal conditions will not call for general maintenance.

▲ WARNING

There are no user-serviceable parts in the Network Master. Possible service or repair should be performed by Anritsu authorized personnel only.

9.1.2 Cleaning

From time to time the Network Master needs to be cleaned. The surfaces of the Network Master can be cleaned with any mild detergent that does not contain solvents.

Before any cleaning, please take notice of the warnings below:

WARNING

Disconnect the Network Master from the mains power connection before any cleaning involving fluid.

- Only use a soft cloth moisturized with a mild detergent to clean the surface of the touch screen.
- Clean the main power adapter regularly. If dust accumulates around the power pins, there is a risk of fire.
- Keep the cooling fan clean so that the ventilation holes are not obstructed. If the ventilation is obstructed, the cabinet may overheat and catch fire.

9.2 Support and Service Assistance

In case your Network Master needs support or service, follow the instructions given in the sub-sections below.

9.2.1 Before you obtain assistance

To ensure fast help the Anritsu representative or the Anritsu Customer Services need detailed information about the Network Master and the problems concerning the Network Master. The minimum information required is listed below:

- A file containing the system information. The file can be generated using the **P** icon in the *instrument toolbar*.
- Possible error code displayed on the touch screen, or any other error indications
- A detailed description of the problem and how it occurred. Please make the description as detailed as possible, e.g. by drawing an illustration and/or saving relevant screen captures.

9.2.2 Obtaining Support or Service Assistance

In the event that this equipment malfunctions, contact an Anritsu Service and Sales office. Contact information is available in a separate file on the DVD version.

9.3 Transporting and Disposal

This section describes the precautions to observe when transporting and disposing of the main frame at the end of its useful life.

9.3.1 Repackaging

Use the original shipping materials, or an approved optional transit case, when repacking the unit for transport. Repack according to the following procedure when the original shipping materials (or a transit case) are not available.

- 1. Procure a corrugated cardboard, wooden, or aluminum box large enough to pack in cushioning material around the unit.
- 2. Wrap the main frame in some material such as plastic sheeting that will prevent entry of dust and water.
- 3. Place the unit into the box.
- 4. Pack soft materials around the main frame so that it cannot slide around inside the packing box.
- 5. Secure the outside of the box with packaging cord, adhesive tape, bands, or other such implements.

9.3.2 Transporting

In addition to preventing vibration as much as possible, transport under conditions meeting the storage conditions outlined above.

9.3.3 Disposal

When the Network Master has reached the end of its useful life, dispose of it in accordance with local environmental regulations. Before disposal, dismantle or physically destroy any non-volatile memory media in the Network Master to ensure that data in memory cannot be recovered by third parties.

9.4 Special Information

9.4.1 Equipment Certificate

Anritsu Corporation certifies that this equipment was tested before shipment using calibrated measuring instruments with direct traceability to public testing organizations, and was found to meet the published specifications.

9.4.2 Anritsu Warranty

Anritsu Corporation will repair this equipment free-of-charge if a malfunction occurs within one year after shipment due to a manufacturing fault. However, software fixes will be made in accordance with the separate Software End-User License Agreement. Moreover, Anritsu Corporation will deem this warranty void when:

- The fault is outside the scope of the warranty conditions separately described in the operation manual.
- The fault is due to mishandling, misuse, or unauthorized modification or repair of the equipment by the customer.
- The fault is due to severe usage clearly exceeding normal usage.
- The fault is due to improper or insufficient maintenance by the customer.
- The fault is due to natural disaster, including fire, wind, flooding, earthquake, lightning strike, or volcanic ash, etc.
- The fault is due to damage caused by acts of destruction, including civil disturbance, riot, or war, etc.
- The fault is due to explosion, accident, or breakdown of any other machinery, facility, or plant, etc.
- The fault is due to use of non-specified peripheral or applied equipment or parts, or consumables, etc.
- The fault is due to use of a non-specified power supply or in a non-specified installation location.
- The fault is due to use in unusual environments(Note).
- The fault is due to activities or ingress of living organisms, such as insects, spiders, fungus, pollen, or seeds.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation shall assume no liability for injury or financial loss of the customer due to the use of or a failure to be able to use this equipment.

Note:

For the purpose of this Warranty, "unusual environments" means use:

- In places of direct sunlight
- In dusty places
- In liquids, such as water, oil, or organic solvents, and medical fluids, or places where these liquids may adhere
- In salty air or in places where chemically active gases (sulfur dioxide, hydrogen sulfide, chlorine, ammonia, nitrogen dioxide, or hydrogen chloride etc.) are present
- In places where high-intensity static electric charges or electromagnetic fields are present
- In places where abnormal power voltages (high or low) or instantaneous power failures occur
- In places where condensation occurs
- In the presence of lubricating oil mists
- In places at an altitude of more than 2,000 m
- In the presence of frequent vibration or mechanical shock, such as in cars, ships, or airplanes

9.4.3 Anritsu Corporation Contact

In the event that this equipment malfunctions, contact an Anritsu Service and Sales office. Contact information can be found on the last page of the printed version of this manual, and is available in a separate file on the DVD version.

9.4.4 Licensing Information

This product includes copyrighted third-party software licensed under the terms of the GNU General Public License.

Please see the GNU General Public License for the exact terms and conditions of this license.

Especially the following parts of this product are subject to GNU GPL:

- The Linux operating system kernel
- The busybox swiss army knife of embedded linux
- e2fsprogs filesystem utilities for use with the ext2 filesystem

All listed software packages are copyrighted by their respective authors. Please see the source code for detailed information.

9.4.5 Availability of Source Code

Anritsu Corporation has the full source code of the GPL licensed software, including any scripts to control compilation of the object code.

9.5 GNU License Document

GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999

Copyright © 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2 in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machinereadable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.

e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-byside in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

9.6 EULA License Document

Software End-User License Agreement (EULA)

Please read this Software End-User License Agreement (hereafter this EULA) carefully before using (includes executing, copying, registering, etc.) this software (includes programs, databases, scenarios, etc., used to operate, set, etc., Anritsu electronic equipment). By reading this EULA and using this software, you are agreeing to be bound by the terms of its contents and Anritsu Corporation (hereafter Anritsu) hereby grants you the right to use this Software with the Anritsu-specified equipment (hereafter Equipment) for the purposes set out in this EULA.

1. Grant of License and Limitations

- 1. Regardless of whether this Software was purchased from or provided free-of-charge by Anritsu, you agree not to rent, lease, lend, or otherwise distribute this Software to third parties and further agree not to disassemble, recompile, reverse engineer, modify, or create derivative works of this Software.
- 2. You may make one copy of this Software for backup purposes only.
- 3. You are not permitted to reverse engineer this software.
- 4. This EULA allows you to install one copy of this Software on one piece of Equipment.

2. Disclaimers

To the extent not prohibited by law, in no event shall Anritsu be liable for personal injury, or any incidental, special, indirect or consequential damages whatsoever, including, without limitation, damages for loss of profits, loss of data, business interruption or any other commercial damages or losses, arising out of or related to your use or inability to use this Software.

3. Limitation of Liability

- a. If a fault (bug) is discovered in this Software, preventing operation as described in the operation manual or specifications whether or not the customer uses this software as described in the manual, Anritsu shall at its own discretion, fix the bug, or exchange the software, or suggest a workaround, free-of-charge. However, notwithstanding the above, the following items shall be excluded from repair and warranty.
 - i. If this Software is deemed to be used for purposes not described in the operation manual or specifications.
 - ii. If this Software is used in conjunction with other non-Anritsuapproved software.
 - iii. Recovery of lost or damaged data.
 - iv. If this Software or the Equipment has been modified, repaired, or otherwise altered without Anritsu's prior approval.
 - v. For any other reasons out of Anritsu's direct control and responsibility, such as but not limited to, natural disasters, software virus infections, etc.
- b. Expenses incurred for transport, hotel, daily allowance, etc., for on-site repairs by Anritsu engineers necessitated by the above faults shall be borne by you.
- c. The warranty period for faults listed in article 3a above covered by this EULA shall be either 6 months from the date of purchase of this Software or 30 days after the date of repair, whichever is longer.

4. Export Restrictions

You may not use or otherwise export or re-export directly or indirectly this Software except as authorized by Japanese and United States law. In particular, this software may not be exported or re-exported (a) into any Japanese or US embargoed countries or (b) to anyone on the Japanese or US Treasury Department's list of Specially Designated Nationals or the US Department of Commerce Denied Persons List or Entity List. By using this Software, you warrant that you are not located in any such country or on any such list. You also agree that you will not use this Software for any purposes prohibited by Japanese and US law, including, without limitation, the development, design and manufacture or production of missiles or nuclear, chemical or biological weapons of mass destruction.

5. Termination

Anritsu shall deem this EULA terminated if you violate any conditions described herein. This EULA shall also be terminated if the conditions herein cannot be continued for any good reason, such as violation of copyrights, patents, or other laws and ordinances.

6. Reparations

If Anritsu suffers any loss, financial or otherwise, due to your violation of the terms of this EULA, Anritsu shall have the right to seek proportional damages from you.

7. Responsibility after Termination

Upon termination of this EULA in accordance with item 5, you shall cease all use of this Software immediately and shall as directed by Anritsu either destroy or return this Software and any backup copies, full or partial, to Anritsu.

8. Dispute Resolution

If matters of dispute or items not covered by this EULA arise, they shall be resolved by negotiations in good faith between you and Anritsu.

9. Court of Jurisdiction

This EULA shall be interpreted in accordance with Japanese law and any disputes that cannot be resolved by negotiation described in Article 8 shall be settled by the Japanese courts.

9.7 CE Conformity Marking

Anritsu affixes the CE conformity marking on the following product(s) in accordance with the Council Directive 93/68/EEC to indicate that they conform to the EMC and LVD directive of the European Union (EU).

9.7.1 Product Model

Model: MT1000A Network Master Pro

9.7.2 Applied Directive

EMC:

Directive 2004 LVD:

Directive 2006/95/EC

9.7.3 Applied Standards

EMC:

Emission: EN 61326-1: 2013 (Class A) Immunity: EN 61326-1: 2013 (Table 2)

Standard	Performance Criteria*
IEC 61000-4-2 (ESD)	В
IEC 61000-4-3 (EMF)	A
IEC 61000-4-4 (Burst)	В
IEC 61000-4-5 (Surge)	В
IEC 61000-4-6 (CRF)	A
IEC 61000-4-8 (RPFMF)	A
IEC 61000-4-11 (V dip/short)	B, C

*: Performance Criteria

- A: During testing, normal performance within the specification limits.
- **B:** During testing, temporary degradation, or loss of function or performance which is self-recovering.
- C: During testing, temporary degradation, or loss of function or performance which requires operator intervention or system reset occurs.

Harmonic current emissions:

EN 61000-3-2:2006 + A1:2009 A2:2009 (Class A equipment)

LVD:

EN 61010-1:2010 (Pollution Degree 2)

9.7.4 Authorized Representative

Name:	Murray Coleman Head of Customer Service EMEA ANRITSU EMEA Ltd
Address, City:	200 Capability Green, Luton Bedfordshire, LU1 3LU
Country:	United Kingdom

9.7.5 CE Declaration

9.8 C-Tick Conformity Marking

Anritsu affixes the C-Tick mark on the following product(s) in accordance with the regulation to indicate that they conform to the EMC framework of Australia/New Zealand.

9.8.1 Product Model

Model:

MT1000A Network Master PRO

9.8.2 Applied Standards

EMC:

Emission: EN 61326-1:2006 (Class A equipment)

9.9 Laser Safety

9.9.1 Laser Safety Classifications

Class 1 indicate the danger degree of the laser radiation specified below according to IEC 60825-1:2007.

Class 1:

Lasers that are safe under reasonably foreseeable conditions of operation, including the use of optical instruments for intrabeam viewing.

The laser in the plug-in unit provided for this equipment is classified as Class 1 according to the IEC 60825-1:2007 standard, and is safe under reasonably foreseeable operating conditions.

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Table 1 Laser Safety	^v Classifications	Based on IE	C 60825-1:2007
----------------------	------------------------------	-------------	----------------

Model		Max. Optical	Pulse Width	Emitted	Beam	Laser	Built-
Name	Class	(mW)*	(S)/ Repetition Rate	(nm)	(deg)	Aperture	Laser
MU100010A	1	0.5	CW	850	31.9	Figure 1,[1],[2]	Table 2 (a)
	1	0.5	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (b)
	1	3.2	CW	1550	11.5	Figure 1,[1],[2]	Table 2 (c)
	1	0.8	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (d)
	1	2.0	CW	1550	11.5	Figure 1,[1],[2]	Table 2 (e)
	1	3.2	CW	1550	11.5	Figure 1,[1],[2]	Table 2 (f)
	1	1.0	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (g)
	1	2.0	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (h)
	1	2.0	CW	1550	11.5	Figure 1,[1],[2]	Table 2 (i)
	1	1.0	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (j)
	1	3.2	CW	1550	11.5	Figure 1,[1],[2]	Table 2 (k)
	1	1.0	CW	850	31.9	Figure 1,[1],[2]	Table 2 (l)
	1	1.2	CW	1310	11.5	Figure 1,[1],[2]	Table 2 (m)
	1	0.04	CW	1310	31.9	Figure 1,[1],[2]	Table 2 (n)
	1	0.8	CW	850	31.9	Figure 1,[1],[2]	Table 2 (o)

* Indicates the possible optical output power when each and every reasonably foreseeable single-fault condition is included.

	Table 2 Specifications of Easer Burtinito MotoootoA						
	Model	Max. Optical Output Power (mW)*	Pulse Width (s)/ Repetition Rate	Emitted Wavelength (nm)	Beam Divergence (deg)		
(a)	G0311A	0.5	CW	850	31.9		
(b)	G0312A	0.5	CW	1310	11.5		
(c)	G0313A	3.2	CW	1550	11.5		
(d)	G0315A	0.8	CW	1310	11.5		
(e)	G0316A	2.0	CW	1550	11.5		
(f)	G0318A	3.2	CW	1550	11.5		
(g)	G0319A	1.0	CW	1310	11.5		
(h)	G0320A	2.0	CW	1310	11.5		
(i)	G0321A	2.0	CW	1550	11.5		
(j)	G0322A	1.0	CW	1310	11.5		
(k)	G0323A	3.2	CW	1550	11.5		
()	G0328A	1.0	CW	850	31.9		
(m)	G0329A	1.2	CW	1310	11.5		
(n)	G0332A	0.04	CW	1310	31.9		
(0)	G0333A	0.8	CW	850	31.9		
* Indicates the possible optical output power when each and every							

Table 2 Specifications of Laser Built into MU100010A

reasonably foreseeable single-fault condition is included.

9.9.2 Indication Labels on Product

Table 3 Labels on Product

	Туре	Label	Affix to	Model Name
1	Explanation	LEC 60825-1-2007 CLASS 1 LASER PRODUCT	Figure 2,A	MU100010A
2	Certification	THIS PRODUCT COMPLIES WITH 21 CFR 1040.10 AND 104.11 EXPEPT FOR DEVIATIONS PURSUANT TO LASER NOTICE. NO. 50 DATED JUNE 24.2007	Figure 2,B	MU100010A
3	Identification	IDENTIFICATION LABEL ANRITSU CORP 5-1-1. ONNA. ATSUGI-SHI KANAGAWA 243-8555, JAPAN MANUFACTURED AT: BBE	Figure 2,C	MU100010A
4	Warning		Figure 2,D	MU100010A

9.9.3 Laser Radiation Markings

Figure 1: Locations of laser beam aperture

Figure 2: Locations of affixed labels

9.10 Wireless Certification

9.10.1 Japan MIC

MT1000A is certified the certification of construction type of specified radio equipment.

9.10.2 North America (USA FCC and Canada IC)

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. This device may not cause interference.
- 2. This device must accept any interference, including interference that may cause undesired operation of this device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- 1. l'appareil ne doit pas produire de brouillage.
- 2. l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

FCC CAUTION

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.

The available scientific evidence does not show that any health problems are associated with using low power wireless devices. There is no proof, however, that these low power wireless devices are absolutely safe. Low power Wireless devices emit low levels of radio frequency energy (RF) in the microwave range while being used. Whereas high levels of RF can produce health effects (by heating tissue), exposure of low-level RF that does not produce heating effects causes no known adverse health effects. Many studies of low-level RF exposures have not found any biological effects. Some studies have suggested that some biological effects might occur, but such findings have not been confirmed by additional research. MT1000A has been tested and found to comply with FCC/IC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines and RSS-102 of the IC radio frequency (RF) Exposure rules. Les connaissances scientifiques dont nous disposons n'ont mis en évidence aucun probème de santé associé à l'usage des appareils sans fil à faible puissance. Nous ne sommes cependant pas en mesure de prouver que ces appareils sans fil à faible puissance sont entièrement sans danger. Les appareils sans fil à faible puissance émettent une énergie radioélectrique (RF) très faible dans le spectre des micro-ondes lorsqu'ils sont utilisés. Alors qu'une dose élevée de RF peut avoir des effets sur la santé (en chauffant les tissus), l'exposition à de faibles RF qui ne produisent pas de chaleur n'a pas de mauvais effets connus sur la santé. De nombreuses études ont été menées sur les expositions aux RF faibles et n'ont découvert aucun effet biologique. Certaines études ont suggéré qu'il pouvait y avoir certains effets biologiques, mais ces résultats n'ont pas été confirmés par des recherches supplémentaires. MT1000A a été testé et jugé conforme aux limites d'exposition aux rayonnements énoncées pour un environnement non contrôlé et respecte les régles les radioélectriques (RF) de la FCC lignes directrices d'exposition et d'exposition aux fréquences radioélectriques (RF) CNR-102 de l'IC.

9.10.3 Europe CE

Hereby, Anritsu Corporation, declares that this instrument is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.

9.10.4 China SRRC

- 使用频率: 2.4 2.4835 GHz
- 等效全向辐射功率(EIRP):
 - 天线增益 < 10 dBi 时: ≤ 100 mW 或 ≤ 20 dBm
- 最大功率谱密度:

WLAN: 天线增益 < 10 dBi 时: ≤ 10 dBm / MHz (EIRP)

- Bluetooth: 天线增益 < 10 dBi 时: ≤ 20 dBm / MHz (EIRP)
- 载频容限: 20 ppm
- 帯外发射功率(在 2.4 2.4835 GHz 頻段以外)

 \leqslant – 80 dBm / Hz (EIRP)

- ▲ 杂散发射(辐射)功率(对应载波±2.5倍信道带宽以外):
 - ≤ 36 dBm / 100 kHz (30 1000 MHz)
 - ≤ 33 dBm / 100 kHz (2.4 2.4835 GHz)
 - \leqslant 40 dBm / 1 MHz (3.4 3.53 GHz)
 - \leqslant 40 dBm / 1 MHz (5.725 5.85 GHz)
 - ≤ 30 dBm / 1 MHz (其它 1 12.75 GHz)

不得擅自更改发射频率、加大发射功率(包括额外加装射频功率放大器),不得擅自外接 天线或改用其它发射天线;

使用时不得对各种合法的无线电通信业务产生有害干扰;一旦发现有干扰现象时,应立即停止使用,并采取措施消除干扰后方可继续使用;

使用微功率无线电设备,必须忍受各种无线电业务的干扰或工业、科学及医疗应用设备 的辐射干扰;

不得在飞机和机场附近使用。

9.10.5 Indonesia SDPPI

34837/SDPPI/2	014
4679	

MT1000A is certified SDPPI wireless certification.

9.10.6 Mexico IFETEL

The operation of this equipment is subject to the following two conditions:

- 1. It is possible that this equipment or device may not cause harmful interference.
- 2. This equipment or device must accept any interference, including interference that may cause undesired operation.

La operación de este equipo está sujeta a las siguientes dos condiciones: :

- 1. es posible que este equipo o dispositivo no cause interferencia prejudicial.
- 2. este equipo o dispositivo debe aceptar cualquier interferencia, incluyendo la que pueda causar su operación no deseada.

9.10.7 Singapore iDA

iDA

MT1000A is certified IDA wireless certification.

9.10.8 Thailand NTC

This telecommunication equipment is in compliance with NTC requirements.

9.11 Declarations

9.11.1 Notes on Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as to be unlawfully used for military purposes.

9.11.2 Information for EU and EFTA Customers Only

Please recycle the battery

The product that you have purchased contains a rechargeable battery. The battery is recyclable. At the end of its useful life, under various state and local laws, it may be illegal to dispose of this battery into the municipal waste. Check with your local solid-waste disposal officials for details of recycling options or proper disposal in your area.

Before disposing of this product, discharge the battery and mail it to your Anritsu Service or Sales office.

- 1. Disconnect the AC adapter, if used.
- 2. Turn the power switch to on.
- 3. Leave the product on until the power indicator goes off; the battery is now discharged.
- 4. Remove the battery.
- 5. Insulate the battery terminals with adhesive tape.
- 6. Please recycle in accordance with your national or regional legislation.

Equipment marked with the Crossed-out Wheeled Bin Symbol complies with council directive 2002/96/EC (the "WEEE directive") in European Union. For products placed on the EU market after August 13, 2005, please contact your local Anritsu representative at the end of the product's useful life to arrange disposal in accordance with your initial contract and the local law.

9.11.3 Information for U.S. Customers Only

Please recycle the battery

The product that you have purchased contains a rechargeable battery. The battery is recyclable. At the end of its useful life, under various state and local laws, it may be illegal to dispose of this battery into the municipal waste stream. Check with your local solid waste officials for details in your area for recycling options or proper disposal.

Before disposing of this product, discharge the battery and mail it to your Anritsu Service or Sales office.

- Attach the battery pack to the product.
 Disconnect the AC adapter, if used.
- 3. Turn the power switch to ON.
- 4. Leave the product on until the power indicator goes off; the battery is now discharged.
- 5. Remove the battery.
- 6. Insulate the battery terminals with adhesive tape.
- 7. Mail it to your Anritsu Service or Sales office, or to the address shown below.

ANRITSU COMPANY 490 Jarvis Drive, Morgan Hill, CA 95037-2809, USA

9.11.4 Information for the Chinese Market Only

Concerning declaration of China RoHS, please see the note below.

China RoHS is not 100% identical to the European (EU) RoHS. EU RoHS has exemptions for Pb and Hg in various alloys, soldering, displays and other products. The China RoHS declaration in the next table does **NOT** comply with EU RoHS.

部件名称	有毒有害物质或元素					
	铅	汞	镉	六价铬	多溴联苯	多溴二苯醚
	(Pb)	(Hg)	(Cd)	[Cr(VI)]	(PBB)	(PBDE)
印刷线路板	~	0	~	×	0	0
(PCA)	^	0	^	~	0	0
机壳、支架	×	0	×	×	0	0
(Chassis)		0		~	U	U
LCD	×	×	×	×	0	0
其他(电缆、风扇、 连接器等)	~	0	~	X	0	0
(Appended	×	0	×	X	0	0
goods)						
〇:表示该有毒有害物质在该部件所有均质材料中的含量均在 SJ/T11363-2006 标准规						
定的限量要求以下。						
×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T11363-2006						
标准规定的限量要求。						

产品中有毒有害物质或元素的名称及含量

环保使用期限

这个标记是根据 2006/2/28 公布的「电子信息产品污染控制管理办法」以及 SJ/T 11364-2006「电子信息产品污染控制标识要求」的规定,适用于在中国 销售的电子信息产品的环保使用期限。仅限于在遵守该产品的安全规范及使用 注意事项的基础上,从生产日起算的该年限内,不会因产品所含有害物质的泄 漏或突发性变异,而对环境污染,人身及财产产生深刻地影响。 注) 电池的环保使用期限是5年。