Microwave USB Power Sensors MA24108A, True-RMS, 10 MHz to 8 GHz MA24118A, True-RMS, 10 MHz to 18 GHz MA24126A, True-RMS, 10 MHz to 26 GHz ### MA24108A and MA24118A at a Glance | Feature | Benefit | |---|--| | Broad Frequency Range (10 MHz to 26 GHz) | Ideal for General Purpose, Aerospace and Defense, Satellite and Cellular applications | | True RMS Measurements over 60 dB Dynamic Range | Enables average power measurement of signals with bandwidths beyond 100 MHz | | NIST Traceable Calibration | Provides traceable measurements needed for Aerospace and Defense applications | | Built-in Internal and External Trigger | Facilitates multislot and burst power measurements (for example, GSM, WiMAX, TD-SCDMA) | | Easy to Use with PC or Select Anritsu Handhelds | No benchtop power meter unit needed | | 1 mW Calibration Need Eliminated | Reduces test time and handling in production | | Worldwide Calibration and Service Centers | Ensure reduced downtime and quick support | | | <u> </u> | N connector designed for use with a torque wrench ensures repeatable connections The MA24108A, MA24118A and MA24126A USB Power sensors are designed to provide accurate average power measurements from 10 MHz to 26 GHz over 60 dB of dynamic range. The sensors employ a "dual path" architecture that provides (similar to thermal sensor) True-RMS measurements over the entire frequency and dynamic range, enabling users to make highly accurate average power measurements for CW, multi-tone, and digitally modulated signals up to 26 GHz. USB Power Sensor Block Diagram Highly accurate modulation measurements are facilitated by keeping the diode detectors in the "square law region" and by choosing the output of the appropriate detector path. A built-in attenuator provides excellent SWR performance, thus minimizing mismatch error. The sensor has built-in external trigger (in addition to a software based internal trigger) circuitry with an MCX connector interface to receive trigger from external stimuli for reliable analysis of very complex timeslot configurations. The presence of a micro-controller along with signal conditioning circuitry, ADC, and power supply in the sensor makes it a complete miniature power meter. All calibration factors, as well as linearity and temperature corrections, are stored inside the sensor. To ensure high accuracy, the standards that are used to calibrate this sensor are directly traceable to the US National Institute of Standards and Technology (NIST), and periodic calibrations are supported by Anritsu service centers worldwide. ### General Purpose and Defense Testing ### High Accuracy for R&D use The MA24108A, MA24118A and MA24126A USB power sensors are ideal for R&D of general purpose and wireless devices and systems due to their low cost, ability to measure a variety of RF and microwave waveforms, wide dynamic range, and power accuracy. Their compact size saves space by replacing traditional benchtop instruments. True-RMS power measurements of modulated signals are made effortlessly with no limits on modulation bandwidths. Measurement linearity error referenced to an ideal thermal power sensor measurement of CW signals operating at 2 GHz (green trace), 8 GHz (red trace), 18 GHz (black trace) and 26 GHz (blue trace). ### **Optimized for Production** MA24108A, MA24118A and MA24126A facilitate lab quality measurements on the production floor for a fraction of cost of existing solutions enabling better test margins. Because the sensor is connected directly to the PC, no base unit is needed, saving valuable rack space. The ability of the sensor to receive external trigger from other instruments, such as signal or function generators, enables its use in complex ATE system applications. The sensor measurement speed can be optimized via features such as auto averaging and auto ranging for best accuracy and noise performance, thus making it suitable for a wide variety of ATE applications. Multiple sensors can be connected and can be controlled remotely via a single PC, allowing flexibility to match specific measurement need. A software toolkit is supplied with every sensor and contains a sample program with source code for controlling the sensor in ATE environments. The reference calibrator (50 MHz, 1 mW) typically needed by power meters has also been eliminated because the connecting USB cable transfers only digital data (corrected power), minimizing test station complexity and sensor handling, and reducing test times. Measurement linearity error referenced to an ideal thermal power sensor measurement at 2 GHz of WiMAX (green trace), CDMA2000 (red trace) and four slot GSM (black trace) signals. ### RF and Microwave Communication Systems Testing ### Ideal for Field MA24108A, MA24118A and MA24126A power sensors provide lab performance accuracy in a rugged and compact field solution. The sensor accuracy is assured over a wide temperature range (0 °C to 55 °C), making it ideal for cellular base station and microwave point-to-point radio installation and maintenance applications. Field and service technicians will appreciate the small size and light weight of this standalone unit because they can carry it in their shirt pocket or laptop case. A very easy to use PC application with a large display makes operation straightforward for users with limited training. The high damage level (+33 dBm) and ESD protection provide ruggedness to this high performance sensor. Presence of DC block at the front end of the sensor protects it from RF signals carrying DC power content. Because these sensors are designed for low power requirements, laptop battery life is preserved. ### Remote Monitoring via LAN Because the USB cable that is connected to the sensor transfers only corrected power back to the host, a 1 mW reference calibrator is not required. However, USB data transfer capabilities limit the cable length to 5 meters, which prohibits any remote monitoring. This limitation can be overcome by installing any generic low cost USB-to-LAN hub converter (for example, a Belkin FL5009) at the measurement site along with the sensors. In this way, power monitoring can be performed across continents, if desired. Antenna measurements over long distance via LAN or Ethernet ### Compact and Powerful The MA24108A, MA24118A and MA24126A sensors have the ability to internally trigger (acquire the trigger from signal under test) or receive an external trigger signal. The triggering capabilities of the power sensor can be exploited in the Scope and the Time Slot modes (via PowerXpert or remote programming commands) of the sensor that enable power measurements on signal bursts and within individual timeslots of TDMA systems, respectively. The sensor ADC can sample RF waveforms at 140,000 samples per second with a Capture Time of up to 300 ms. Negative trigger delay can be introduced to analyze pre-trigger waveform events. Positive trigger delay is especially useful for analysis of non-periodic waveforms. Measurement of average power of a WiMAX burst while excluding the effects of preamble via gate and fence feature of MA24118A using PowerXpert. ### **Scope Measurements** In scope mode, the sensor is triggered internally or externally to display power measurements with respect to time. Measurement of noisy or modulated signals can be challenging because the trigger can occur at a wrong point or at a wrong edge. To provide immunity against noise and modulation effects, a noise immunity factor and trace averaging can be adjusted. A Gate and Fence feature enables measurement of the desired portion of the waveform. All points that fall within the gate are measured, and points that fall within the fence are rejected. This feature is particularly useful when measuring waveforms that contain very short duty cycle timing information that otherwise skews average power measurement. Measurement of a GSM four slot waveform with a MA24118A and PowerXpert in Time Slot mode ### **Time Slot Measurements** Time Slot mode operation is generally useful when doing measurement on TDMA waveforms such as GSM/EDGE. The slot mode breaks up the measurement in time slots and calculates the average power reading for each individual slot. Similar to the scope mode, measurements are internally or externally triggered. The sensor has built- in external trigger circuitry with an MCX connector interface to receive trigger from external stimuli for reliable analysis of very complex timeslot configurations. The sensor has the ability to support up to 128 slots intervals and 300 ms total Capture Time. This feature allows entire frames of many types of communication signals to be analyzed. Similar to the scope mode, the unwanted portions in the transition from one timeslot to the next can be masked by user-definable exclusion periods. ### Compatibility Measurement of average power in slot 4 of TD-SCDMA waveform via time gating feature of MA24118A using PowerXpert. MA24118A with PC Laptop These power sensors can be used with a PC running Microsoft Windows® via USB. They come with PowerXpert[™] application, a data analysis, and control software. A front panel display makes the PC appear like a traditional power meter. The application has abundant features, such as data logging, power versus time graph, big numerical display, and many more, that enable quick and accurate measurements. The power sensors are also compatible with an Option-19-enabled Site Master™ (S3xxE), Spectrum Master[™] (MS271xE and MS272xB), Cell Master[™] (MT8212E), BTS Master[™] (MT822xA/B), VNA Master™ (MS202xA/B and MS203xA) and Economy Benchtop Microwave Spectrum Analyzers (MS271xB) family of instruments. The power sensor easily connects to these instruments via a USB A/micro-B cable, turning each of them into a virtual power meter that displays average power of signal under test. Users interested in making measurements in Timeslot mode and Scope mode must use a PC instead (PowerXpert or remote programming commands). MA24118A with MS2724B Spectrum Master ### Specifications | | | MA24108A | MA24118A | MA24126A | |--------------------------------|--|--|--|--| | Sensor | | | 1 | | | Frequency range | | 10 MHz to 8 GHz | 10 MHz to 18 GHz | 10 MHz to 26 GHz | | Dynamic range (CW) | | -40 dBm to +20 dBm | | | | Dynamic range (Time | eslot) | -40 dBm to +20 dBm | | | | Dynamic range (Scop | | -40 dBm to +20 dBm | | | | SWR | , | < 1.17, 10 MHz to 150 MHz
< 1.12, 150 MHz to 2 GHz
< 1.22, 2 GHz to 8 GHz | < 1.17, 10 MHz to 150 MHz
< 1.12, 150 MHz to 2 GHz
< 1.22, 2 GHz to 12 GHz
< 1.25, 12 GHz to 18 GHz | < 1.90, 10 MHz to 50 MHz
< 1.17, 50 MHz to 150 MHz
< 1.12, 150 MHz to 2 GHz
< 1.22, 2 GHz to 12 GHz
< 1.25, 12 GHz to 18 GHz
< 1.35, 18 GHz to 26 GHz | | Signal channel rise ti | me | 8 µs typical | | | | Video bandwidth | | 50 kHz typical | | | | Sampling rate | | 140 ks/s, typical | | | | Measurement ranges | | Range 1, +20 dBm to -7 dBm typical
Range 2, -7 dBm to -40 dBm typical
Auto ranging between range 1 and 2 | | | | Measurement l | Incertainty | | | | | Linearity | | < 3% | | | | Cal factor ¹ | | < 2.3% at 10 MHz
< 1.5%, 50 MHz to 8 GHz | < 2.3% at 10 MHz
< 1.5%, 50 MHz to 18 GHz | < 3.5% at 10 MHz
< 2.0%, 50 MHz to 2 GHz
< 2.5%, 3 GHz to 8 GHz
< 3.0%, 9 GHz to 15 GHz
< 3.5%, 16 GHz to 26 GHz | | Noise ² | | < 8 μW, Range 1
< 40 nW, Range 2 | | | | Zero set ³ | | < 1 μW, Range 1
< 10 nW, Range 2 | | | | Zero drift ⁴ | | < 0.5 μW, Range 1
< 3 nW, Range 2 | | | | Effect of temperature | | < 1.4% | | | | Effect of digital modu | lation | < 0.5%, < +18 dBm
< 1.4%, > +18 dBm | | | | System | | 1 | | | | Measurand | | Average power | | | | Measurement resolut | ion ⁶ | 0.01 dB max via PowerXpert, 0.001 d | dB max via remote command | | | Offset correction ⁷ | | -100 dB to +150 dB | | | | Averaging | | Auto, Manual | | | | Туре | | Moving, Repeat | | | | Number of average | | 1 to 40,000 | | | | | Resolution ⁹ | 1 dB, 0.1 dB, 0.01 dB, 0.001 dB | | | | Auto average | Source
(slot # or scope
data point number) | Timeslot: 1 to 128
Scope: 1 to 1024 | | | | Continuous Ave | erage Mode | 1 | | | | Duty Cycle correction | I | 0.01% to 100% | | | | Aperture time | | 0.01 ms to 300 ms | | | | Measurement time ¹⁰ | | N x (Capture Time x 2.5) + T_d + T_{col} | m | | | Scope Mode | | | | | | Capture time | · | 0.01 to 300 ms | | | | Data points | | 1 to 1024 | | | | Resolution | | 0.007 ms, max via remote command
0.01 ms, max via PowerXpert | | | | Measurement time ¹¹ | | N x (Capture Time x 3.75) +(P _n X T | _{dp}) + T _{com} | | | Timeslot Mode | | | • | | | Maximum number | of slots | 128 | | | | Slot with | | 0.01 ms to 100 ms | | | | Maximum capture t | :ime | 300 ms (slot width x number of slots |) | | | Resolution | | 0.007 ms, max via remote command
0.01 ms, max via PowerXpert | • | | | | Start exclusion | 0 ms to 10 ms | | | | Exclusion periods | End exclusion | 0 ms to 10 ms | | | | | 1 | N x (Capture Time x 3.75) +(P _n X T _n | | | ### **Specifications** | Trigger | | |-----------------------------|--| | Source ¹² | Bus, Continuous, Internal and External | | Internal Trigger | | | Dynamic range | -20 dBm to +20 dBm | | Level accuracy | ± 0.5 dB, typical | | Slope | Positive or negative | | Delay range | -5 ms to +10 s | | Delay resolution | 10 μs | | External Trigger | | | Impedance | 100 kΩ | | Туре | TTL/CMOS | | Slope | Positive or negative | | Delay range | -5 ms to +10 s | | Delay resolution | 10 µs | | Positive threshold voltage | 2.0 V typical | | Negative threshold voltage | 1.2 V typical | | Hysteresis | 0.8 V typical | | General | | | RF connector | N male, K male (MA24126A) | | Interface to host | USB 2.0 full speed (compatible with USB 1.0 and 1.1) | | Current consumption | 150 mA, typical | | External trigger input | MCX (female), 12 V max | | Damage levels at RF port | +33 dBm, ± 20 V DC | | Size | 25 mm x 45 mm x 110 mm, excluding N connector | | Weight | 230 g (0.51 lb) | | Environmental ¹³ | 1 2 2 | | Operating temperature range | 0 °C to 55 °C | | Storage temperature range | -51 °C to +71 °C | | Humidity | 45% relative humidity at 55 °C (non-condensing) 75% relative humidity at 40 °C (non-condensing) 95% relative humidity at 30 °C (non-condensing) | | Shock | 30 g half-sine, 11 ms duration | | Vibration | Sinusoidal: 5 Hz to 55 Hz, 3 g max. Random: 10 Hz to 500 Hz Power Spectral Density: 0.03 g²/Hz | | EMC | EN 61326, EN 55011 | | Safety | EN 61010-1 | | PowerXpert v2.0 (PC red | quirements) | | Processor and RAM | Minimum: Equivalent to Intel® Pentium® III with 1 GB RAM or Intel® Pentium® IV with 512 MB RAM Recommended: Equivalent to Intel® Pentium® IV with 1 GB RAM | | Operating system | Microsoft® Windows 7, Windows Vista®, Windows XP and Windows 2000 | | Hard-disk free space | 100 MB, minimum | | Display resolution | 1024 × 768, minimum | | Interface | USB 2.0 full speed (compatible with USB 1.0 and 1.1) | | | | ### Notes: $\hbox{All specs are applicable after twenty minutes warm-up at room temperature unless specified otherwise.} \\$ - 1 Expanded uncertainty with K=2 for absolute power measurements on CW signal at 0 dBm and calibration frequencies 10 MHz, 50 MHz, 100 MHz, 300 MHz, 500 MHz, and 1 GHz to 8 GHz (for MA24108A), or to 18 GHz (MA24118A) or to 26 GHz (for MA24126A) in 1 GHz increments.. - 2 Expanded uncertainty with K=2 after zero operation when measured with 1 average, and 20 ms aperture time for 5 minutes. Effect of Noise can be reduced by increasing the number of averages and/or increasing the aperture time. Noise goes down as square root of number of averages and aperture time. For example with 128 averages, the Noise is 3.5 nW (40 nW divided by √128). Effect of increased aperture time is calculated in the same way. - 3 Expanded uncertainty with K=2 after zero operation when measured with 1 average, and 20 ms aperture time for 5 minutes. - 4 Expanded uncertainty with K=2 after one hour warm-up and zero operation, 1 average, 20 ms aperture time, and keeping the temperature within ±1 °C. - 5 Measurement error with reference to a CW signal of equal power and frequency at 25 °C. - 6 Resolution in PowerXpert application is 2 digits after the decimal. Native resolution of the sensor is 3 digits after the decimal. - 7 Offset correction feature is available only through PowerXpert application. There is no remote command for it in the sensor firmware. - 8 Maximum number of averages allowed in Continuous Average mode and Timeslot mode is 40,000. In scope, the maximum number of averages is equal to 8231936 divided by data points. - 9 Averaging resolution of 0.001 dB is not available with PowerXpert application. It is defined as the place after the decimal to which the reading becomes stable. E.g. if 0.01 is selected then the reading will typically be stable ± 0.01 dB. Please refer to the remote operation chapter in the user guide for information regarding access to this feature. - 10 Speed is defined as the data throughput at the "A" end of the USB A to Micro-B Cable (p/n 2000-1606-R). T_d is the delay compensation for smaller Capture Times, $T_d = 0$ for Capture Time >9 ms, $T_d = 0$ ms for 2 ms < Capture Time <9 ms, $T_d = 0$ ms for Capture Time <2 ms, $T_{com} = 0$ ms, command processing time. - 11 Speed is defined as the data throughput at the "A" end of the USB A to Micro-B Cable (p/n 2000-1606-R). Where N is the number of repeat averages, N = 1 for moving average mode, P_n = Number of points, T_{dp} = 0.05 ms (Communication delay (approx) due to each point), T_{com} = 5 ms, command processing time. - 12 Bus trigger not available in PowerXpert application. - 13 Tests were performed per MIL-PRF-28800F (Class 2). ### **Ordering Information** MA24108A 8 GHz USB Power Sensor MA24118A 18 GHz USB Power Sensor MA24126A 26 GHz USB Power Sensor | Model | Description | | | |----------------------|-----------------------------------|--|-------------------------------------| | 2300-526 | Product CD-Anritsu PowerXpert | and IISB Power Sensors | | | 10585-00021 | Quick Start Guide | and obb rower sensors | | | 2000-1605-R | 1.5 m BNC (m) to MCX (m) cab | le | | | 2000-1606-R | 1.8 m USB A to Micro-B cable w | | | | Available Options | 1 | | | | Option Number | Description | | | | MA24108A-097 | Option 97, Accredited Calibration | to ISO17025 and ANSI/NCSL Z540. Test re | port and uncertainty data included. | | MA24108A-098 | Option 98, Standard calibration t | o ISO17025 and ANSI/NCSL Z540 | | | MA24108A-099 | Option 99, Premium calibration to | o ISO17025 and ANSI/NCSL Z540. Test repo | ort and uncertainty data included. | | MA24118A-097 | Option 97, Accredited Calibration | to ISO17025 and ANSI/NCSL Z540. Test re | port and uncertainty data included. | | MA24118A-098 | Option 98, Standard calibration t | o ISO17025 and ANSI/NCSL Z540 | | | MA24118A-099 | Option 99, Premium calibration to | o ISO17025 and ANSI/NCSL Z540. Test repo | ort and uncertainty data included. | | MA24126A-097 | Option 97, Accredited Calibration | to ISO17025 and ANSI/NCSL Z540. Test re | port and uncertainty data included. | | MA24126A-098 | Option 98, Standard calibration t | o ISO17025 and ANSI/NCSL Z540 | | | MA24126A-099 | Option 99, Premium calibration to | o ISO17025 and ANSI/NCSL Z540. Test repo | ort and uncertainty data included. | | Optional Accessorie | es | | | | Calibrated Torque Wi | renches | | | | Model | Description | | | | 01-200 | Calibrated torque wrench for N | connector | | | 01-204 | Calibrated torque wrench for K | and V connectors | | | Cables | | | | | Model | Description | | | | 2000-1614-R | 5.0 m USB A to Micro-B cable w | vith latch | | | Power Attenuators | | | | | Model | Frequency range | Rating | Connectors | | 3-1010-123 | DC to 8.5 GHz | 30 dB, 50 W, 50 Ω | N (m) to N (f) | | 3-1010-124 | DC to 8.5 GHz | 40 dB, 100 W, 50 Ω | N (m) to N (f) | | 3-1010-122 | DC to 12.4 GHz | 20 dB, 5 W, 50 Ω | N (m) to N (f) | | 42N50-20 | DC to 18 GHz | 20 dB, 5 W, 50 Ω | N (m) to N (f) | | 42N50-30 | DC to 18 GHz | 30 dB, 50 W, 50 Ω | N (m) to N (f) | | 41KB-3 | DC to 26.5 GHz | 3 dB, 50 Ω | K (m) to K (f) | | 41KB-6 | DC to 26.5 GHz | 6 dB, 50 Ω | K (m) to K (f) | | 41KB-10 | DC to 26.5 GHz | 10 dB, 50 Ω | K (m) to K (f) | | 41KB-20 | DC to 26.5 GHz | 20 dB, 50 Ω | K (m) to K (f) | | | DC +- 36 F CH- | 2 dP E0 O | 1/ (m) to 1/ (f) | | 43KB-3 | DC to 26.5 GHz | 3 dB, 50 Ω | K (m) to K (f) | 6 dB, 50 Ω 10 dB, 50 Ω 20 dB, 50 Ω K (m) to K (f) K (m) to K (f) K (m) to K (f) 43KB-6 43KB-10 43KB-20 DC to 26.5 GHz DC to 26.5 GHz DC to 26.5 GHz ### Ordering Information ### **Precision Coaxial Adapters** | Model | Frequency range | Connectors | |-----------|-----------------|-----------------------| | 510-90 | DC to 3.3 GHz | N (m) to 7/16 DIN (f) | | 510-91 | DC to 3.3 GHz | N (f) to 7/16 DIN (f) | | 510-92 | DC to 3.3 GHz | N (m) to 7/16 DIN (m) | | 510-93 | DC to 3.3 GHz | N (f) to 7/16 DIN (m) | | 33NFNF50B | DC to 18 GHz | N (f) to N (f) | | 33NNF50B | DC to 18 GHz | N (m) to N (f) | | 33NN50B | DC to 18 GHz | N (m) to N (m) | | 34AN50 | DC to 18 GHz | GPC-7 to N (m) | | 34ANF50 | DC to 18 GHz | GPC-7 to N (f) | | 34NFK50 | DC to 18 GHz | N (f) to K (m) | | 34NFKF50 | DC to 18 GHz | N (m) to K (f) | | 34NK50 | DC to 18 GHz | N (m) to K (m) | | 34NKF50 | DC to 18 GHz | N (m) to K (f) | | 1091-26 | DC to 18 GHz | N (m) to SMA (m) | | 1091-27 | DC to 18 GHz | N (m) to SMA (f) | | 1091-80-R | DC to 18 GHz | N (f) to SMA (m) | | 1091-81-R | DC to 18 GHz | N (f) to SMA (f) | ### /ınritsu ### **Anritsu Corporation** 5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1264 ### • U.S.A. ### Anritsu Company 1155 East Collins Boulevard, Suite 100, Richardson, Texas 75081 U.S.A. Toll Free: 1-800-ANRITSU (267-4878) Phone: +1-972-644-1777 Fax: +1-972-671-1877 ### Canada ### Anritsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006 ### • Brazil ### Anritsu Electrônica Ltda. Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - São Paulo - SP - Brasil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940 ### Mexico ### Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147 ### • U.K. ### Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K. Phone: +44-1582-433280 Fax: +44-1582-731303 ### • France ### Anritsu S.A. 12 Avenue du Québec, Bâtiment Iris 1-Silic 638, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65 ### • Germany Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49 (0) 89 442308-0 Fax: +49 (0) 89 442308-55 ### • Italy ### Anritsu S.p.A. Via Elio Vittorini, 129, 00144 Roma, Italy Phone: +39-06-509-9711 Fax: +39-06-502-2425 ### • Sweden ### Anritsu AB Borgafjordsgatan 13, 164 40 Kista, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30 ### Finland ### Anritsu AB Teknobulevardi 3-5, FI-01530 Vantaa, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111 ### Denmark ### Anritsu A/S (for Service Assurance) Anritsu AB (Denmark) (for Test & ### Measurement except Service Assurance) Kirkebjerg Allé 90 DK-2605 Brøndby, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210 ### Russia ### Anritsu EMEA Ltd. ### Representation Office in Russia Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962 ### United Arab Emirates Anritsu EMEA Ltd. ### Dubai Liaison Office P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suite 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460 ### Singapore Anritsu Pte. Ltd. 60 Alexandra Terrace, #02-08, The Comtech (Lobby A) Singapore 118502 Phone: +65-6282-2400 Fax: +65-6282-2533 ### • India ### Anritsu Pte. Ltd. India Branch Office 3rd Floor, Shri Lakshminarayan Niwas, #2726, 80 ft Road, HAL 3rd Stage, Bangalore - 560 075, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301 ### • P. R. China (Hong Kong) Anritsu Company Ltd. Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 ### Fax: +852-2301-3545 • P. R. China (Beijing) ### Anritsu Company Ltd. ### **Beijing Representative Office** Room 2008, Beijing Fortune Building, No. 5 , Dong-San-Huan Bei Road, Chao-Yang District, Beijing 100004, P.R. China Phone: +86-10-6590-9230 Fax: +86-10-6590-9235 ### • Korea ### Anritsu Corporation, Ltd. 8F Hyunjuk Bldg. 832-41, Yeoksam-Dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604 ### Australia Anritsu Pty Ltd. ### Anritsu Pty Ltd. Unit 21/270 Ferntree Gully Road, Notting Hill Unit 21/270 Ferntree Gully Road, Notting H Victoria, 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255 ### • Taiwan ### Anritsu Company Inc. 7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817 # MA241xxA Series USB Power Sensors ## **Anritsu** ### Highlights - Power Measurements with 10 MHz to 26 GHz Frequency Measurement Range - True RMS Measurements over 63 dB Dynamic Range - NIST Traceable Calibration - Built-in Internal and External Trigger in Microwave USB Sensors - Easy to Use with PC or Select Anritsu Handhelds - No Need for a Reference Calibrator - Economical Alternative to Traditional Benchtop Meters - Light Weight and Easy to Use USB Mini-B Port connects PC or USB enabled handheld instruments **USB Mini-B Port for** PC connectivity functional status of the sensor Two Color LED reports Two Color LED reports functional status of the sensor Inline High Power Sensors External USB Micro-B Port connectivity to host (PC or other instrument) status of the sensor Microwave USB Power Sensors **Trigger Input** reports functional Two Color LED **USB Power Sensors** display makes the PC appear like a traditional power meter. The PowerXpert application has Power sensors can be used with a PC running Microsoft Windows® via USB. A front panel abundant features, such as data logging, power versus time graph, big numerical display, and many more features that enable quick and accurate measurements. 999 00000 PowerXpert™ Data Analysis and Control Software # MA241xxA Series USB Power Sensors # Ordering Information # Microwave USB Power Sensors | Model | Description | Power Range | |----------|---|--------------------| | MA24108A | True-RMS, 10 MHz to 8 GHz USB Power Sensor | -40 dBm to +20 dBm | | MA24118A | True-RMS, 10 MHz to 18 GHz USB Power Sensor | -40 dBm to +20 dBm | | MA24126A | True-RMS, 10 MHz to 26 GHz USB Power Sensor | -40 dBm to +20 dBm | | | | | - Product CD Anritsu PowerXpert and USB Power Sensors - Quick Start Guide - 1.5 m BNC (m) to MCX (m) Cable - . 1.8 m USB A to Micro-B Cable with Latch ### USB Power Sensor | er Range | 3m to +23 dBm | |-------------|--| | Powe | -40 dBm | | Description | True-RMS, 50 MHz to 6 GHz USB Power Sensor | | Model | MA24106A | | MA24106A | True-RMS, 50 MHz to 6 GHz USB Power Sensor | |----------|--| | | | - Product CD Anritsu PowerXpert and USB Power Sensors - Quick Start Guide - 1.8 m USB A to Mini-B Cable with Screws ## Inline High Power Sensor | Model | Description | Power Range | |----------|---|---------------| | MA24104A | True-RMS, 600 MHz to 4 GHz Inline High Power Sensor | 2 mW to 150 W | | | | | - Product CD Anritsu PowerXpert and USB Power Sensors - Quick Start Guide - . 1.8 m USB 2.0 A to Mini-B Cable with Screws - 1.8 m RS-232 Cable - External Power Supply - AA Batteries (Qty 3)