ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com

High Performance Product Catalog

ITECH-Your Power Test Solution

7_7_7_7_7_7_7_7_7_7_

www.itechate.com

ITECH ELECTRONICS

About ITECH ELECTRONICS

Your Power Test Solution

About ITECH

ITECH is devoted to research and development in power supply technologies in test and measurement. The company specialized over the years and it is skilled in producing high power electronic testing systems, high-performance automated testing systems, power supplies and electronic loads. Our products are widely used by enterprises in all fields. Our products are well known for high performance and quality which are exported to over twenty countries in Europe, North America and Asia.

Quality Policy

ITECH will keep on researching and developing new products to satisfy the diversified application requirements, and supplying perfect quality for your needs through continuous improvements.

Marketing And Service

ITECH market and service cover over thirty contries in Europe,North America and Asia etc. We will supply the best products together with the best after-sale service for you.

Vision

The mission of ITECH is to serve the customer requirements. ITECH will be continuously devoted to researching and manufacturing power supplies and power supply testing products, and supply to you high quality products and the best after sale service support through its excellent technology and marketing network .ITECH will be one of your preferred suppliers .

Our Customer

ITECH products are widely preferred by customers for the reputation , performance and quality. Our customers including famous companies and institutions in worldwide, such as ABB, Bosch, Intel, LG, Nokia, Siemens, Sony, Fuji, Volkswagen, Ford, Delta, Samsung, BMW, Logic and Foxconn etc.

ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com

IT6500C/D WIDE RANGE HIGH-POWER

17.998Å

DC POWER SUPPLY

29.996V

539.8U

TECH TECH

High-power single unit is up to 30kW

 \Rightarrow

Wide-range over 100 models

Continuous source & sink testing

30kW

time <

AS

Fast curve changing without overshoot

IT6500 helps you to overcome the challenges in high power test.

APPLICATIONS

- Aerospace & Aviation
- Welding & Plating
- R&D

Military

Vehicle Battery

Motor

- Solar Charger
- Automotive

01 Index

ITECH provides best solution with our continuous research and creativity.

ITECH has excellent agency and service points in worldwide. If you need local service, please visit www.itechate.com or contact us directly.

IT8800 DC E-Load

IT7300 AC Power Supply

Optional Accessories P73-P75

Selection Guide

P76-P77

P55-P72

For other languages version catalog, please contact us. 如需中文目录,请与我们联系 Kontaktieren Sie uns bitte fur den Katalog--in Deutsch Sprache 기타 언어버전 설명서는 한국어를--참조하세요 カタログご請求の場合、ご連絡ください

ITECH ELECTRONICS Your Power Testing Solution							In	dex	02
		Spe	cificatio	ons		Ap	plication	าร	
Products	Page	Voltage Max.	Current Max.	Power Max.	٠.	Ē	Ŷ	ŭ	۲
High Performance Products									
AC/DC Programmable Electronic Lo	ads								
IT8615 AC& DC Electronic Loads NEW	P04-P06	420V	20A	1800W	*	Ē	Ŷ	ŭ	۲
DC Electronic Loads									
IT8700 Multi-channel Electronic Loads	P07-P11	500V	120A	600W	*	Ē		ŭ	۲
IT8800 Multi-function Electronic Loads NEW	P12-P21	800V	1500A	55KW	*	Ē	Ŷ	ŭ	ø
IT8900 LED Electronic Loads	P22-P25	500V	15A	300W			Ŷ		
Dual-channel Bipolar Programmable	DC Powe	er Suppli	es						
IT6412 Battery/Charger Simulators NEW	P27-P29	±15V	±5A	45W	K	Ē	Ŷ	մ	ø
DC Power Supplies		100	TON	-011					
IT6500 High Power Wide Range Power Supplies NEW	P30-P35	1000V	1200A	30kW	*	5	Ŷ	Ծ	ø
IT6722 Digital Control Power Supplies	P36	80V	20A	400W	~~~	Ē	Ŷ	ۍ ۲	Ð
IT6700H High Voltage Power Supplies	P37-P39	1200V	110A	3000W		Ē	Ŷ	մ	۲
IT6830A/B Power Supplies	P40-P41	150V	10A	216W	*	Ē	Ŷ	ŭ	Ð
IT6300B Triple Output Power Supplies	P42-P43	30V	6A	180W	*			ŭ	Ð
IT6160B High Accuracy Power Supplies NEW	P44	60V	50A	1200W		Ē	Ŷ	Ծ	۲
IT6100 High Accuracy Power Supplies	P45	60V	60A	1200W	*	Ē	Ŷ	ŭ	Ð
AC Power Supplies									
IT7300 Programmable AC Power Supplies	P46-P50	500V	24A	3000VA			Ŷ	Ծ	
Power Analyzers	140-130	300 V	247	3000VA			V	U	۲
IT9121 Power Analyzers	P51-P54	600V	20A		¥.	٦	Ŷ	Ծ	
	101-104	0000	201		v₀_ ⊘		V	U	۲
Test Systems ITS5300 Battery Test System	P56-P62					٤			
ITS9500 Battery Test System ITS9500 Power Supply Auto Test System	P63-P70					لشا			Ð
ITS9380 Solar BatteryTest System	P71-P72							ŭ	.0
Optional Accessories								-	
Optional Accessories	P73-P75								
Selection Guide					* Note:	*	2	ັບ	۲
Selection Guide	P76-P77					Automotive Electronic	Battery LED	Green Energy	Power Supply

03 ITECH Electronic Load

High Performance Products DC ELECTRONIC LOAD

Significantly upgrade the efficiency of researching, designing and production-testing.

From single-channel to multi-channels,from 150W to 600kW,ITECH electronic load can meet all your requirements, with high stability and accuracy

IT8615 AC/DC Electronic Loads NEW

IT8615 AC/DC Electronic Load is compact for the 420V/20A/1800W input capability.AC frequency is adjustable from 45Hz to 450Hz. The unique oscilloscope display function provides insight into the voltage and current input waveform. It is equiped with measurement modes for different parameters such as inrush current, peak value, effective value, PF(Power Factor). Also voltage harmonic of as high as 50th order can be measured directly. P04-P06

IT8700 Multi-channel Electronic Load

IT8700 electronic load with one single mainframe can take up to 8 channels. It meets your high-standard requirements by allowing high-accuracy testing and controlling. Various Interfaces and with standard SCPI and VISA communication

Protocols, it can be used in testing system easily. P07-P11

IT8800 Multi-function Electronic Load

IT8800 programmable high-accuracy electronic load supply especial LED mode to support LED power drive test to simulate LED current. The power ranges from 150W-600KW, The highest resolution of voltage and current is 0.1mV and 0.01mA.IT8800 is equipped with build-in RS232, USB, GPIB and software IT7000 to make it convenient to test, edit and control instrument. P12-P21

IT8900 LED Programmable Electronic Load

IT8900 series high accuracy electronic loads can simulate the real output of LED lights with different characteristics. Their specific circuit can realize CR-LED mode, adjustable frequency, duty ratio PWM dimming output port (frequency: 20Hz-2KHz). Widely used in LED driver power dimming test. P22-P25

IT8615 AC/DC Electronic Load

IT8615 AC/DC Electronic Load

IT8615 is our latest AC/DC electronic load. At 3U height, it's very compact for the 420V/20A/1800W input capability. AC Frequency is adjustable from 45Hz to 450Hz. The unique oscilloscope display function provides insight into the voltage and current input waveform. It is equipped with measurement modes for different parameters such as inrush current, peak value, effective value, PF (power factor). Also voltage harmonics of as high as 50th order can be measured directly. All in all the IT8615 provides very comprehensive analysis of your DUT performance. The product is equipped with standard RS232, GPIB, LAN and USB communication interfaces for reliable and fast control. The eLoad is the perfect solution for testing UPS, inverters, AC power supplies and relevant AC electronic components.

Features

- Input : 50~420Vrms, 0~20Arms and 1800W
- Frequency range: 45~450Hz
- 3U Height, 1800W and 7"LCD screen
- Parallel connection/three-phase control
- Oscilloscope function supporting display of voltage and current waveform

Applications

- Uninterruptible Power Supplies (UPS)
- Inverters
- Frequency Transformer
- Generator
- AC Power Source

- Be able to measure Vrms, Vpk, Vdc, Irms, lpk, ldc, W, VA, VAR, CF, PF and FREQ
- Measures THD (V) up to 50th Harmonic
- AC electronic load: CC /CR/CP mode
- DC electronic load: CC/CR/CP/CV mode
- External 0-10V analog control input, voltage and current analog monitoring function
- OTP, OCP, OVP, UVP and OPP protection function
- RS232, GPIB, LAN and USB communication interfaces and external USB flash disk interface

Model	Voltage	Current	Power
IT8615	50-420V	0-20A	1800W

Electronic Components

Harmonic Measuring And Analysis Function

IT8615 provides powerful data measurement function, which can not only support measurement of conventional parameters such as Vrms, Vpk, Vdc, Irms, Ipk, Idc, W, VA, VAR, CF, PF and Freq, but also provides a unique voltage harmonic analysis function to verify the harmonic interference of the object (uninterruptible power supply, generators, etc.) to be measured over the grid. The harmonic measurement function supports analysis up to the 50th voltage harmonic.

05 IT8615 AC/DC Electronic Load

Oscilloscope Function

The most unique highlight of IT8615 lies in the oscilloscope display function, which can display the input voltage and current waveform of the DUT. Under the harmonic measurement mode, the analysis result of the percentage of different harmonics can be displayed in the bar diagram. The innovative display mode provides a powerful new user experience.

Parallel / three Phase Control

Adjustable CF/PF Value

IT8615 has CC,CR and CP operation modes.In CC and CP operation modes,PF or CF or both are available for programming.Power factor range is 0~1 lead or lag,CF setting range is 1.414~5,besides CF and PF,IT8615 also has various settings modes for choice to realize actual current simulation.

IT8615 provides parallel, 3-phase and 3-phase paranel functions for 3-phase and high-power applications. In 3-phase applications, users can make Y or △connection according to their specific requirements. IT8615 is available for AC 380V input to meet diverse test requirements.

Display Multiple Parameters Simultaneously

IT8615 provides 7inch LCD display screen, graphical interface display user interface. Give full consideration to engineers' requirements in different tests, IT8615 not only can display multiple parameters simultaneously, but also has diversified display modes for choice, such as waveform, histogram and list etc.

	(.4()02						0.(0.(Peak OII	Hold On
Umax			lmax	0.003		Pmax	0.0	w	Freq	0.0	Hz		
Udc	1.00	۷	lpk+	0.008	A	Q	D.0	var	PF	0.389		-	
Uthd	0.0		klc	0.000	A	Temp	0.00	°C	CF	3.405			
ls	et=	0.23	А	į	CF=	5.000		PF	= 1.0	00 Master	r AB		

IT8615 AC/DC Electronic Load 06

IT8615 AC/DC ELECTRONIC LOAD

		AC Section
	Input voltage	50 ~ 420 Vrms, 600 V peak
	Input current	0 ~ 20 Arms, 60 A peak
Input Parameters	Input power	0 ~ 1800 W
	Frequency	45 ~ 450 Hz
	Range	0.1 ~ 20 Arms
CC mode	Resolution	2 mA
	Accuracy	± (0.1 % + 0.2 % FS)
	Range	3 Ω ~ 2.5 ΚΩ
CR mode *1	Resolution	16 bit
	Accuracy	0.2 % + 0.01 S
	Range	1800 W
CP mode	Resolution	0.4 W
	Accuracy	0.5 % + 0.5 % FS
	Range	1.414 ~ 5.0
Crest Factor(CF) (CP,CC mode)	Resolution	0.005
	Accuracy	(0.5% / Irms) + 1 % F.S.
	Range	0 ~ 1 lead or lag
Power Factor(PF)	Resolution	0.001
		DC Section
	Input voltage	10 ~ 600 V
Rating value	Input current	0.1 ~ 20 A
	Input power	0 ~ 1800 W
Working mode	CC, CV, CP, CR	
Short circuit simulation	The max power point o	r max current in CC mode
		Meter
	Range	0 ~ 60 A
Current	Resolution	1 mA
	Accuracy	0.1 % + 0.2 % FS + 0.1 % * CF ^ 2 * KHZ
	Range	0 ~ 600 V
Voltage	Resolution	10 mV
	Accuracy	0.1 % + 0.1 % FS
		Meter(continue)
Others	S (VA), Q (VAR), P (W)	, Ip+, Ip-, Freq, THDv, CF, PF, R, FFT
		Other
Vmonitor	± 600 V / ± 10V (Isolate	ed)
Imonitor	± 60 A / ± 10 V (Isolate	ed)
Protection	OCP: 21 Arms, OVP: 4	30 Vrms, OPP: 1900 W, OTP: 85°C
Remote Interface	GPIB, USB, LAN	
Dimension(H*W*D)	482.5 mm x 133mm x 6	00.6mm
Weight	25 Kg	
	Voltage	100 ~ 240 V AC
Power Supply	Frequency	47 ~ 63 Hz
	Operation Current	< 2.5 A (110V), < 1.25 A (220 V)

*1.Input Voltage/Current ≥ 10 % FS

*2.Resistance Readback Range: (1 / (1/R + (1/R) * 0.01 % + 0.08), 1 / (1 / R - (1 / R) * 0.01 % - 0.08))

*3.Rising/Falling Slope: Between 0 and maximum current, R/F slope is 10 % ~ 90 % Current rising slope.

Features

- Removable modules for easy system configurability
- Dynamic power distribution function for dual channels, save your cost
- Dual-channel module displays every channel information simultaneously
- Measure short-circuit peak current value

IT8700 Multi-channel Electronic Load

IT8700 series programmable DC

- Up to 25 kHz transient mode and 100 kHz List mode
- Measurement resolution: 0.1mV, 0.01mA (10 uA)
- Measurement speed:up to 50 kHz
- Auto-test function
- Adjustable slew rate in CC mode
- Support several load modules working at the same time
- Supports up to 16 channels with mainframe extension
- Output resolution up to 16 bits, voltmeter and ammeter reach 5 1/2 bits
- CC\CV\CR\CP mode
- Highlight VFD display for both mainframe and modules
- Support USBTMC/SCPI communication protocol
- Output terminals on the rear panel
- Simulate the transient response and export measured values in time
- Built-in waveform generator and LIST mode
- Bulit-in LAN, GPIB, USB, RS232 interfaces

electronic load supports up to 16 channels with mainframe extension. transient mode up to 25 kHz ,which improves your test efficiency,with high resolution and accuracy,IT8700 CC、CV、CR,remote sensing,short -circuit and transient mode make your testing conveniently.

Your Power Testing Solution

IT8700 Electronic Load 08

IT8700 series programmable DC electronic, loads applied in: test of AC/DC power supply with single and mulitple output DC/DC convector, chargers, batteries and power electronical components. It supplies efficient way for researching, manufacturing, quality control and so on. Modular design make you install different modules into the mainframe, and control via front panel keypad, Ethernet, USB, RS232 and GPIB standard interface.

IT8700 programmable DC electronic load have 6 models of modules, with power (from 200W to 600W), current (up to 120A), voltage (up to 500V). Every load module is grounded separately to avoid short circuit damage. And with 5 1/2 digit current and voltage measurement function. Master/slave design allows all modules to work simultaneously. All modules can work in CC, CV, CR, CP mode.

IT8700 programmable DC electronic load can simulate many kinds of transient condition. You can edit load waveform by editing voltage, current, slew rate and width. With the capacity of saving up to 100 groups test parameters and status, the system can recall at any time.

IT8700 programmable DC electronic load applies high-precision circuit of 5 1/2 dight with multi-range and 5 1/2 digit. You can test and adjust line-voltage, and simulate short-circuit testing easily via front panel keyboard. Moreover, IT8700 provide optional remote

IT	3700 Electronic Load
IT8731	80V/40A/200W
IT8732	80V/60A/400W
IT8732B	500V/20A/300W
IT8733	80V/120A/600W
IT8733B	500V/30A/600W
IT8722	80V/20A/ _{Max} 250W-CH1
	80V/20A/Max250W-CH2 *1
IT8722B	500V/15A/250W NEW
IT8723	80V/45A/Max300W-CH1
	80V/45A/Max300W-CH2 *1
IT8702	Mainframe(include 4 interfaces)
IT8703	Extended mainframe
1: The total powe	r of dual channel for IT8722 is 300W.

If the two channels of IT8722 work at the same time, need to satisfy: 50 W \leq PCH1 / PCH2 \leq 2500W; PCH1 + PCH2 \leq 300W 2:The modules should be equipped with IT8702 mainframe 3:Interface of mainframe :RS232,USB,GPIB,Ether Net

IT8700 series has voltage and current measurement function with high resolution and high accuracy,no need to add additonal voltmeter and ammeter which save your cost.

controller for the automatic production line.

IT8700 programmable DC electronic load have self-test system as well as OCP, OVP, OPP, OTP and reverse polarity protection to ensure the reliability for engineering-test and auto-test systems.

1. Freely system structure configurable

IT8700 programmable DC electronic load, there is a high-performance microprocessor in every module and mainframe. It has high measurement speed because of parallel architecture. The system controls modules synchronously, and can also test multi-output batteries synchronously.

2. Modular design

With removable module design, you can choose suitable load modules to modify the system according to your requirement. This design allows for multiple channels and is ideal for testing severval units, especially power supplies with multiple outputs.

IT8700 Multi-channel Electronic Load

IT8722 firstly apply the technology that one module takes two channels with dynamic distribution power. User can adjust the power of the two channels according to the testing requirement (total power \leq 300W).

3. Auto-test

When applied in automatic production testing, you can judge whether the test parameters of DUT are within the specification limits and adjust according to the GO/NG output sates.

Powerful communication interfaces

IT8702 mainframe has bulit-in GPIB/Ethernet/USB/ RS232 complete communication interfaces. In appliance of the auto-testing system, you can carry out data communication through SCPI/VISA/ USBTMC standard communication protocols to control modules' testing.

5. The best resolution and accuracy

Compared to similar products,IT8700 series have the best features high resolution of 0.1 mV / 0.01 mA which help you get high accurate data. Moreover, up to 50 kHz measurement speed makes your testing rapid and accurate.

6.High-speed transition and list mode with 100kHz List mode ,user can finish various waveforms test by editting every step width and slew rate to creat complex sequences .

7.Dynamic power distribution mode

Usually, one module require high power while another require low power in battery testing. IT8722 allows you to distribute the power among all slots arbitrarily (150W/150W)—(1W/299W) within the total power(300W) – helping you make full use of the load's power.

IT8732B and IT8733B measurement voltage can up to 500V.

IT8733 provide maximum current of 120A which is the most effective testing instrument for high power testing.

Dynamic Mode:

Dynamic mode enables the module to periodically switch between two load-levels. A power supply's regulation and transient characteristic can be evaluated by monitoring the supply's output voltage waveform under varying combinations of load levels, frequency, duty cycle and slew rate. IT8700 can supply transient operation not only in CC mode, but also in CV, CR mode. Transient operation can be used in test integral response of the circuit, e.g. the current changes when the disk driver run and stop. Transient operation can simulate these condition.

LIST Mode:

Not limited to just switching between two levels ,list mode helps you generate more complex sequences of input changes with several different levels.

IT8700 LIST mode measurement speed can up to 100KHz.

IT8702 and IT8703 combination

softwave

		IT8731			3732		T8732B		8733
Input rating	0.014	0~80 V 0~4 A 0·	~ 40 A	0 ~ 80 0 ~ 6 A	V 0 ~ 60 A	0 ~ 500 V	V 0 ~ 20 A	0 ~ 80 V 0 ~ 12 A) ~ 120 A
(0~40 °C)	Current Power	200 W	~ 40 A	400 W		0 ~ 3 A 300		600 W	J ~ 120 A
	MOV	NO. OF THE OWNER OWNER	/ at 40 A	0.15 V at 6 A	1.5 V at 60 A	0.7 V at 3 A	4.5 V at 20 A	0.18 V at 12 A 1	8 V at 120 A
	Range		- 80 V	0 ~ 18 V	0 ~ 80 V	0 ~ 18 V	0 ~ 500 V) ~ 80 V
CV mode	Resolution		mV	1 mV	10 mV	1 mV	10 mV	1 mV	10 mV
	Accuracy	± (0.05 % + 0.02 % FS) ± (0.	.05 % + 0.025 % FS)	± (0.05 % + 0.02 % FS) ± (0.05 % + 0.025 % FS) ± (0.05 % + 0.02 %	FS) ± (0.05 % + 0.025 % FS	5) ± (0.05 % + 0.02 %	FS) ± (0.05 % + 0.025 % F
	Range	0~4A 0~	- 40 A	0~6A	0 ~ 60 A	0~3A	0 ~ 20 A	0 ~ 12 A	0 ~ 120 A
CC mode	Resolution	0.1 mA 1 m	nA	0.1 mA	1 mA	0.1 mA	1 mA	0.1 mA	1 mA
	Accuracy	± (0.05 % + 0.05 % FS) ± (0.	.05 % + 0.05 % FS)	± (0.05 % + 0.05 % FS) ± (0.05 % + 0.05 % FS) ± (0.05 % + 0.05 %	FS)± (0.05 % + 0.05 % FS)	± (0.05 % + 0.1 % F	FS) ± (0.1 % + 0.1 % FS)
	Range	Contract of the second s	Ω ~ 7.5 ΚΩ	0.05 Ω ~ 10 Ω	10 Ω ~ 7.5 KΩ	0.25 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.02 Ω ~ 10 Ω	
CR mode	Resolution	16 bit		16 b		16		16 bi	
	Accuracy Range	0.0000000000000000000000000000000000000	1 % + 0.0008 S	0.01 % + 0.08 S	0.01 % + 0.0008 S	0.01 % + 0.08 S	0.01 % + 0.0008 S	0.01 % + 0.08 S	
CP mode	Resolution	200 W 10 mW			00 W 0 mW		300 W 10 mW		600 W 10 mW
or mode	Accuracy	± (0.2 % + 0.2	% FS)	(A.1776-1144)	% + 0.2 % FS)		t (0.2 % + 0.2 % FS)		2 % + 0.2 % FS)
	,	2 (0.2 70 - 0.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- (0		-	1 (0.2 /0 + 0.2 /0 + 0/	- (o.	2 10 1 0.2 1010)
		CC		CC		CC		(00
Dynamic mode	T1&T2	20µS ~ 3600 S /	/Res:1µS	20 µS ~	3600 S / Res: 1 µS	20µS ~ 3600)S / Res:1µS	20µS~3	600S/Res:1µS
	Accuracy				5 uS ± 1			W	
	Rise/fall slope	0.0001 ~ 0.25 A /µS 0.0	01 ~ 2.5 A / μS [*]	0.0001 ~ 0.25 A / µs	6 0.001 ~ 2.5 A / μS	* 0.0001 ~ 0.1 A /	μS 0.001 ~ 1 A /μS	0.0001 ~ 0.2	5 Α / μS 0.001 ~ 2.5 Α / μS [*]
/oltage readback	and the second se	0~18 V 0~80		0 ~ 18 V	0 ~ 80 V	0 ~ 18 V	0 ~ 500 V	0 ~ 18 V	
	Resolution	0.1 mV 1 mV		0.1 mV	1 mV	1 mV	10 mV	0.1 mV	1 mV
Surrent and T	Accuracy			0.01		+ 0.025 % FS)			0 100 1
Current readback	Resolution	0 ~ 4 A 0 ~ 40 0.01 mA 0.1 mA		0~6A	0 ~ 60 A	0~3A	0 ~ 20 A	0 ~ 12 A	
	Accuracy	0.01 mA 0.1 mA ± (0.05 % + 0.05		0.1 mA + (0.05 %	1 mA + 0.05 % FS)	0.01 mA ±(0.05%+0.0	0.1 mA	0.1 mA ± (0.05 % + 0.1	1 mA 1 % FS)± (0.1 % + 0.1 % FS
ower readback	Range	± (0.05 % + 0.05 200 W	,,,,,,,,		+ 0.05 % FS)) W	±(0.05%+0.0		- (2:00 /0 / 0:	600 W
	Resolution	10 mW			mW	10mW			10 mW
	Accuracy	± (0.1 % + 0.1 %	% FS)		% + 0.1 % FS)	±(0.1%+0		± (0	0.2 % + 0.2 % FS)
								- 17	
OPP		≈200 W		≈4	00 W	R 3	300W		≈ 600 W
OCP		≈4.4 A ≈44 A	4	≈6.6 A	≈66 A	≈3.3 A	≈22 A	≈13.2 /	\ ≈132 A
OVP		≈82 V			2 V		510 V		≈82 V
OTP		≈85 °C		≈ 8	5 °C	≈{	85 °C		≈85 °C
	(00)		40.4	~~~					
Short circuit	current (CC) Voltage (CV)	≈4.4 / 4 A ≈44 /	40 A	≈6.6 / 6 A	≈66 / 60 A	≈3.3 A	≈ 22 A	≈13.2 /	12 A ≈132 / 120 A
	Voltage (CV) Resistance (CR)	≈ 25 mΩ			≈25 mΩ	0 V ~	220 mΩ		≈15 mΩ
input Impedance		300 KΩ			° 25 mΩ		220 mu		×10 m1
indut indeuance				3	00 KO		1 MO		300 KO
Dimension (W			73 mm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 KΩ * 183 * 573 mm		1 MΩ 183 * 573 mm	02000.00	300 KΩ 183 * 573 mm
and the second second second		82 * 183 * 5	73 mm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 KΩ * 183 * 573 mm		1 MΩ 183 * 573 mm	02000.00	300 KΩ ' 183 * 573 mm
		82 * 183 * 5	100000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 183 * 573 mm	82 *		82 *	' 183 * 573 mm
Dimension (W	*H*D)	82 * 183 * 5 IT8	3733B	82	* 183 * 573 mm IT87	82 *	183 * 573 mm	82 * IT87	183 * 573 mm 723
Dimension (W	*H*D) Voltage	82 * 183 * 57 IT8 0 ~ 5	3733B	82	* 183 * 573 mm IT87 80 V	82 * 22 0 ~ 80	183 * 573 mm	82 * IT87 0 ~ 1	' 183 * 573 mm '23 80 V
Dimension (W	*H*D) Voltage Current	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A	3733B	82 0~ 0~3 A	* 183 * 573 mm IT87 80 V 0 ~ 20 A	82 * 22 0 ~ 3 A	183 * 573 mm 0 V 0 ~ 20 A	82 * IT87 0 ~ 0 ~	* 183 * 573 mm * 23 80 V 45 A
	*H*D) Voltage Current Power	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A 500 W	3733B 500 V 0 ~ 30 A	82 0 ~ 3 A 250 V	* 183 * 573 mm IT87 80 V 0 ~ 20 A W	82 * 22 0 ~ 3 A 250 W	183 * 573 mm 0 V 0 ~ 20 A	82 * IT87 0 ~ 0 ~ 300	723 80 V 45 A W
Dimension (W	*H*D) Voltage Current	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A	3733B 500 V 0 ~ 30 A 5.4 V / 30 A	82 0~ 0~3 A	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A	82 * 22 0 ~ 80 0 ~ 3 A 250 W 0.15 V at 3 A	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A	82 * IT87 0 ~ 0 ~ 300 0.14 V / 4.5 A	23 80 V 45 A W 1.4 V / 45 A
Dimension (W Input rating 0~40 °C)	*H*D) Voltage Current Power MOV	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A 500 W	3733B 500 V 0 ~ 30 A	82 0 ~ 0 ~ 3 A 250 0.15 V at 3 A	* 183 * 573 mm IT87 80 V 0 ~ 20 A W	82 * 22 0 ~ 3 A 250 W	183 * 573 mm 0 V 0 ~ 20 A	82 * IT87 0 ~ 0 ~ 300	723 80 V 45 A W
Dimension (W Input rating 0~40 °C)	*H*D) Voltage Current Power MOV Range	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV	82 0~ 0~3 A 250 V 0.15 V at 3 A 0~ 18 V 1 mV	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV	82 * IT87 0 ~ 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV	23 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV
Dimension (W Input rating 0~40 °C)	*H*D) Voltage Current Power MOV Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV	82 0~ 0~3 A 250 V 0.15 V at 3 A 0~ 18 V 1 mV	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV	82 * IT87 0 ~ 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A	23 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV
Dimension (W Input rating 0~40 °C) CV mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy	82 * 183 * 53 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA	82 0~3 A 250 V 0.15 V at 3 A 0~18 V 1 mV % FS)± (0.05 % + 0.02 % 0~3 A 0.1 mA	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0. 1 mA	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA	82 * IT87 0 ~ 0 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA	* 183 * 573 mm * 23 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA
Dimension (W Input rating (0~40 °C) CV mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy	82 * 183 * 53 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA	82 0~3 A 250 V 0.15 V at 3 A 0~18 V 1 mV % FS)± (0.05 % + 0.02 % 0~3 A 0.1 mA	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0. 1 mA	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA ± (0.05 % + 0.05 %	* 183 * 573 mm * 23 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA
Dimension (W Input rating 0~40 °C) CV mode CC mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range	82 * 183 * 53 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω	 * 183 * 573 mm * 23 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % F 10 Ω ~ 7.5 KΩ
Dimension (W Input rating 0~40 °C) CV mode CC mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 ° 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 ° 10 Ω ~ 7.5 KΩ	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 B	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16	 * 183 * 573 mm * 23 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit
Dimension (W Input rating 0~40 °C) CV mode CC mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	82 * 183 * 57 0 ~ 3 A 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 m V S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 E 0.01 % + 0.08 S	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S	82 * IT87 0 ~ 1 0 ~ 1 0 ~ 1 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2	723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) $\pm (0.05 \% + 0.025 \%)$ 0 ~ 45 A 1 mA % FS) $\pm (0.05 \% + 0.05 \% + 100\%)$ 10 $\Omega \sim 7.5 \text{ K}\Omega$ bit 0.01 $\% + 0.0008 \text{ S}$
Dimension (W Input rating 0~40 °C) CV mode CC mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ IT8 $0 \sim 5$ $0 \sim 3 \text{ A}$ 500 W 0.54 V / 3 A $0 \sim 18 \text{ V}$ 1 mV $\pm (0.05 \% + 0.02 \% \text{ FS})$ $0 \sim 3 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.05 \% \text{ FS})$ $0.20 \Omega \sim 10 \Omega$ 16 bit $0.01 \% + 0.08 \text{ S}$ 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 ° 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 ° 10 Ω ~ 7.5 KΩ	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S	82 * IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300	723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) $\pm (0.05 \% + 0.025 \%)$ 0 ~ 45 A 1 mA % FS) $\pm (0.05 \% + 0.05 \% H)$ 10 $\Omega \sim 7.5 \text{ K}\Omega$ bit 0.01 $\% + 0.0008 \text{ S}$
Dimension (W Input rating 0~40 °C) CV mode CC mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.02 \% FS$ 0 ~ 3 A 0.1 mA $\pm (0.05 \% + 0.05 \% FS$ 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10	723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) $\pm (0.05 \% + 0.025 \%)$ 0 ~ 45 A 1 mA % FS) $\pm (0.05 \% + 0.05 \%)$ 10 Ω ~ 7.5 K Ω bit 0.01 % + 0.0008 S 9 W mW
Dimension (W Input rating 0~40 °C) CV mode CC mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ IT8 $0 \sim 5$ $0 \sim 3 \text{ A}$ 500 W 0.54 V / 3 A $0 \sim 18 \text{ V}$ 1 mV $\pm (0.05 \% + 0.02 \% \text{ FS})$ $0 \sim 3 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.05 \% \text{ FS})$ $0.20 \Omega \sim 10 \Omega$ 16 bit $0.01 \% + 0.08 \text{ S}$ 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS)	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10	723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) $\pm (0.05 \% + 0.025 \%)$ 0 ~ 45 A 1 mA % FS) $\pm (0.05 \% + 0.05 \%)$ 10 $\Omega \sim 7.5 \text{ K}\Omega$ bit 0.01 $\% + 0.0008 \text{ S}$
Dimension (W Input rating 0~40 °C) CV mode CC mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.02 \% FS$ 0 ~ 3 A 0.1 mA $\pm (0.05 \% + 0.05 \% FS$ 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10	723 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % F 10 Ω ~ 7.5 K Ω bit 0.01 % + 0.0008 S W mW 6 + 0.2 % FS)
Dimension (W Input rating (0~40 °C) CV mode CV mode CR mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ IT8 $0 \sim 5$ $0 \sim 3 \text{ A}$ 500 W 0.54 V / 3 A $0 \sim 18 \text{ V}$ 1 mV $\pm (0.05 \% + 0.02 \% \text{ FS})$ $0 \sim 3 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.05 \% \text{ FS})$ $0.20 \Omega \sim 10 \Omega$ 16 bit $0.01 \% + 0.08 \text{ S}$ 500 W 10 mW $\pm (0.2 \% + 0 \text{ CC})$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) \pm (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) \pm (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV \pm (0.2 % +	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V	82 * IT87 0 ~ $\frac{1}{0}$ 0 ~ $\frac{1}{300}$ 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 1 ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 %	723 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 K Ω bit 0.01 % + 0.0008 S W mW 6 + 0.2 % FS)
Dimension (W Input rating (0~40 °C) CV mode CC mode CR mode	*H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ IT8 $0 \sim 5$ $0 \sim 3 \text{ A}$ 500 W 0.54 V / 3 A $0 \sim 18 \text{ V}$ 1 mV $\pm (0.05 \% + 0.02 \% \text{ FS})$ $0 \sim 3 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.05 \% \text{ FS})$ $0.20 \Omega \sim 10 \Omega$ 16 bit $0.01 \% + 0.08 \text{ S}$ 500 W 10 mW $\pm (0.2 \% + 0 \text{ CC})$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) \pm (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) \pm (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 E 0.01 % + 0.08 S 250 W 10 mV \pm (0.2 % +	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V	82 * IT87 0 ~ $\frac{1}{0}$ 0 ~ $\frac{1}{300}$ 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 µS ~	723 723 80 V 45 A 723 80 V 45 A 723 80 V 45 A 723 723 723 723 723 723 723 723
Dimension (W Input rating (0~40 °C) CV mode CC mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ $IT8$ $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 %	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D) CC	* 183 * 573 mm IT87. 80 V 0 ~ 20 A N 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS ±	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) \pm (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) \pm (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 H 0.01 % + 0.08 S 250 W 10 mV \pm (0.2 % + CC 00 S / Res: 1 µS \pm 100 ppm	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS)	82 * IT87 0 ~ $\frac{1}{0}$ 0 ~ $\frac{1}{300}$ 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 µS ~	23 23 24 23 25 23 26 27 23 27 23 27 23 27 27 27 27 27 27 27 27 27 27
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range T1&T2 Accuracy Rise/fall slope	$82 * 183 * 57$ $IT8$ $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 µS	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /μ	* 183 * 573 mm IT87. 80 V 0 ~ 20 A N 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS ±	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) \pm (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) \pm (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 H 0.01 % + 0.08 S 250 W 10 mV \pm (0.2 % + CC 00 S / Res: 1 µS \pm 100 ppm	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS)	82 * IT87 0 ~ $\frac{1}{0}$ 0 ~ $\frac{1}{300}$ 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 1 ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 µS ~ 5 µS 0.0001 ~ 0.25 A / µS	23 23 24 23 20 23 20 23 20 23 20 23 20 20 20 20 20 20 20 20 20 20
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range	$82 * 183 * 57$ $IT8$ $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /μ 0 ~ 18 V	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS ±	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 80 V 0 ~ 80 V	82 * IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.025 \%)$ 0 ~ 4.5 A 0.1 mA 1 $\pm (0.05 \% + 0.05 \%)$ 0.05 $\Omega ~ 10 \Omega$ 16 0.01 $\% + 0.08 S * 2$ 300 10 $\pm (0.2 \%)$ CC 20 μ S ~ 5 μ S 0.0001 ~ 0.25 A / μ S	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A 9 W 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A / µS 0 ~ 80 V
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$82 * 183 * 57$ $IT8$ $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 µS 0.001 ~ 1 A /µS	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) \pm (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) \pm (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV \pm (0.2 % + CC 00 S / Res: 1 µS \pm 100 ppm 0.0001 ~ 0.2 A /µS	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 80 V 0 ~ 80 V	82 * IT87 0 ~ 2 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.025 \%)$ 0 ~ 4.5 A 0.1 mA 1 $\pm (0.05 \% + 0.05 \%)$ 0.05 $\Omega ~ 10 \Omega$ 16 0.01 % + 0.08 S * 2 300 10 $\pm (0.2 \%)$ CC 20 μ S ~ 5 μ S 0.0001 ~ 0.25 A / μ S	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A * 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 0 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A /µS 0 ~ 80 V 1 mV
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	$82 * 183 * 57$ $IT8$ $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02)	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS ± S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS)	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA 5)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 80 V 1 mV 0.2 % FS)	82^{+} $1T87$ $0 \sim 10^{-}$ 300 $0.14 \vee / 4.5 \text{ A}$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA $1 \pm (0.05 \% + 0.05 \%$ $0.05 \Omega \sim 10 \Omega$ 16 $0.01 \% + 0.08 \text{ S}^{+} 2$ 300 10 $\pm (0.2 \%$ 10 $20 \mu \text{ S}^{-}$ $5 \mu \text{ S}$ $0.0001 \sim 0.25 \text{ A} / \mu \text{ S}$ $0 \sim 18 \vee$ 0.1 mV $\pm (0.025 \% + 0.025 \% + 0.025 \%$	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A * 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 0 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A / µS 0 ~ 80 V 1 mV .025%FS)
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$82 * 183 * 57$ $0 - 5$ $0 - 3 A$ $0 - 5$ $0 - 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.001 ~ 1 A /µS 0 ~ 500 V 10 mV 0 ~ 30 A	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 16 V 0 ~ 18 V 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 18 V 0.1 mV	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0.2 % FS)	82^{+} $1T87$ $0 \sim 300$ $0.14 \vee / 4.5 A$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 A$ 0.1 mA 16 $0.01 \% + 0.08 \text{ S}^{+} 2$ $0.05 \Omega \sim 10 \Omega$ 10 $\pm (0.2 \%$ 10 $20 \mu \text{ S}^{-}$ $5 \mu \text{ S}$ $0.0001 \sim 0.25 \text{ A} / \mu \text{ S}$ $0 \sim 18 \vee$ $0 \sim 4.5 \text{ A}$	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A * 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 0 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A /µS 0 ~ 80 V 1 mV .025% FS) 0 ~ 45 A
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	$82 * 183 * 57$ $IT8$ $0 ~ 5$ $0 ~ 3 A$ $500 W$ $0.54 V / 3 A$ $0 ~ 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 ~ 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega ~ 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S ~ 36$ $0.0001 ~ 0.1 A / \mu S$ $0 ~ 18 V$ $1 mV$ $1 mV$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.1 mA	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 7.5 m 0 ~ 7.5 m	82 * IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.025 \%$ 0 ~ 4.5 A 0.1 mA 16 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 $\pm (0.2 \%$ CC 20 µS ~ 5 µS 0.0001 ~ 0.25 A / µS 0 ~ 18 V 0 ~ 18 V 0 ~ 18 V 0.001 ~ 18 V 0.0001 ~ 0.25 A / µS	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A /µS 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy	$82 * 183 * 57$ $0 - 5$ $0 - 3 A$ $0 - 5$ $0 - 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$ $1 mV$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA .05 % FS)	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 16 V 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02) 0 ~ 3 A 0.1 mA ± (0.05)	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS)	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) ± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV ± (0.2 % + 0.02 % F 0 ~ 18 V 0.0001 ~ 0.2 A / μ S	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 7.5 m 0 ~ 7.5 m	82^{+} $1T87$ $0 \sim 10^{-}$ 300 $0.14 \vee / 4.5 A$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 A$ 0.1 mA $1 \pm (0.05 \% + 0.05 \%$ $0.05 \Omega \sim 10 \Omega$ 16 $0.01 \% + 0.08 \text{ S}^{+} 2$ 300 10 $\pm (0.2 \%$ 10 $20 \mu \text{ S}^{-}$ $5 \mu \text{ S}$ $0.0001 \sim 0.25 \text{ A} / \mu \text{ S}$ $0 \sim 18 \vee$ $0 \sim 18 \vee$ $0 \sim 18 \vee$ 0.1 mV $\pm (0.025 \% + 0.025 \% + 0.025 \%$	* 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A / µS 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA 05%FS)
Dimension (W Input rating (0~40 °C) CV mode CC mode CR mode CR mode CP mode Oynamic mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$82 * 183 * 57$ IT8 $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$ $1 mV$ $0 - 18 V$ $1 mV$ $0 - 3 A$ $0.01 mA$ $\pm (0.05 \% + 0)$ $500 W$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA .05 % FS)	82 0 - 3 A 0 - 3 A 250 V 0.15 V at 3 A 0 - 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 - 3 A 0.1 mA % FS)± (0.05 % + 0.05 % $0.05 \Omega - 10 \Omega$ 16 S 0.01 % + 0.08 S $\pm (0.2 \Omega)$ 0 - 18 V 0 - 25 A 0 - 25 A 0 - 25 A	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5) ± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 E 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0 ~ 18 V 0.1 mV 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 80 V 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 80 V 0 ~ 1 mV 0 ~ 7.5 m 0 ~ 7.5 m	82 * IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.025 \%$ 0 ~ 4.5 A 0.1 mA 16 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 $\pm (0.2 \%$ CC 20 µS ~ 5 µS 0.0001 ~ 0.25 A / µS 0 ~ 18 V 0 ~ 18 V 0 ~ 18 V 0.001 ~ 18 V 0.0001 ~ 0.25 A / µS	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A /µS 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA 05%FS) W
Dimension (W Input rating (0~40 °C) CV mode CC mode CR mode CR mode CP mode Oynamic mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$82 * 183 * 57$ $0 - 5$ $0 - 3 A$ $0 - 5$ $0 - 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0)$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$ $1 mV$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA .05 % FS)	82 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 16 V 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.05 25 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS)	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) ± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV ± (0.2 % + 0.02 % F 0 ~ 18 V 0.0001 ~ 0.2 A / μ S	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~	82^{+} $1T87$ $0 \sim 10^{-}$ 300 $0.14 \vee / 4.5 \text{ A}$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA 10^{-} 16^{-} $0.05 \Omega \sim 10 \Omega$ 16^{-} $0.01 \% + 0.08 \text{ S}^{+} 2$ 300^{-} 10^{-} $\pm (0.2 \% + 0.05 \%$ $0.0001 \sim 0.25 \text{ A} / \mu \text{S}$ $0 \sim 18 \vee$ 0.1 mV $\pm (0.025 \% + 0.025 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.025 \% + 0.025 \%$	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 - 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μ3 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA 05%FS) W nW</pre>
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.02 \% FS$ 0 ~ 3 A 0.1 mA $\pm (0.05 \% + 0.05 \% FS$ 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW $\pm (0.2 \% + 0)$ CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 1 mV 0 ~ 3 A 0.01 mA $\pm (0.05 \% + 0.05 \% FS)$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA .05 % FS)	82 0 - 3 A 0 - 3 A 250 V 0.15 V at 3 A 0 - 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 - 3 A 0.1 mA % FS)± (0.05 % + 0.05 % $0.05 \Omega - 10 \Omega$ 16 S 0.01 % + 0.08 S $\pm (0.2$ 0 - 3 A 0.01 % + 0.08 S $\pm (0.2$ D CC 0 - 18 V 0 - 18 V 0 - 18 V 0.01 mV $\pm (0.02)$ 0 - 3 A 0.01 mA $\pm (0.02)$ 0 - 3 A 0.01 mA	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) ± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV ± (0.05 % + 0 250 W 10 mW	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~	82^{+} $1T87$ $0 \sim 10^{-}$ 300 $0.14 \vee / 4.5 \text{ A}$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA 10^{-} 16^{-} $0.05 \Omega \sim 10 \Omega$ 16^{-} $0.01 \% + 0.08 \text{ S}^{+} 2$ 300^{-} 10^{-} $\pm (0.2 \% + 0.05 \%$ $0.0001 \sim 0.25 \text{ A} / \mu \text{S}$ $0 \sim 18 \vee$ 0.1 mV $\pm (0.025 \% + 0.025 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.025 \% + 0.025 \%$	* 183 * 573 mm * 183 * 573 mm * 23 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) * 3600 S / Res: 1 µS ± 100 ppm 0.001 ~ 2.5 A /µS 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA 05%FS) W
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV $\pm (0.05 \% + 0.02 \% FS$ 0 ~ 3 A 0.1 mA $\pm (0.05 \% + 0.05 \% FS$ 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW $\pm (0.2 \% + 0)$ CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 1 mV 0 ~ 3 A 0.01 mA $\pm (0.05 \% + 0.05 \% FS)$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS)	82 0 - 3 A 0 - 3 A 250 V 0.15 V at 3 A 0 - 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 - 3 A 0.1 mA % FS)± (0.05 % + 0.05 % $0.05 \Omega - 10 \Omega$ 16 S 0.01 % + 0.08 S $\pm (0.2$ 0 - 3 A 0.01 % + 0.08 S $\pm (0.2$ 0 - 18 V 0 - 18 V 0.1 mV $\pm (0.02)$ 0 - 3 A 0.01 mA $\pm (0.02)$ 0 - 3 A 0.01 mA $\pm (0.02)$ 10 - 18 V 0.1 mV $\pm (0.02)$ 10 - 18 V 0.1 mV $\pm (0.02)$ 10 - 3 A 0.01 mA $\pm (0.02)$ 10 - 3 A 0.01 mA $\pm (0.05 - 25)$ 10 - 10 V 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS)	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S) ± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV ± (0.05 % + 0 250 W 10 mW	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 1 mV 0 ~ 1 mV 0 ~ 1 mV 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 1 mV	82^{+} $1T87$ $0 \sim 10^{-}$ 300 $0.14 \vee / 4.5 \text{ A}$ $0 \sim 18 \vee$ 1 mV $\pm (0.05 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA 10^{-} 16^{-} $0.05 \Omega \sim 10 \Omega$ 16^{-} $0.01 \% + 0.08 \text{ S}^{+} 2$ 300^{-} 10^{-} $\pm (0.2 \% + 0.05 \%$ $0.0001 \sim 0.25 \text{ A} / \mu \text{S}$ $0 \sim 18 \vee$ 0.1 mV $\pm (0.025 \% + 0.025 \% + 0.025 \%$ $0 \sim 4.5 \text{ A}$ 0.1 mA $\pm (0.05 \% + 0.025 \% + 0.025 \%$	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 - 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μ3 0 ~ 80 V 1 mV .025% FS) 0 ~ 45 A 1 mA 05% FS) W hW 5 + 0.2 % FS)</pre>
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CP mode Oynamic mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	$82 * 183 * 57$ IT8 $0 - 5$ $0 - 3 A$ $500 W$ $0.54 V / 3 A$ $0 - 18 V$ $1 mV$ $\pm (0.05 \% + 0.02 \% FS$ $0 - 3 A$ $0.1 mA$ $\pm (0.05 \% + 0.05 \% FS$ $0.20 \Omega - 10 \Omega$ $16 bit$ $0.01 \% + 0.08 S$ $500 W$ $10 mW$ $\pm (0.2 \% + 0$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$ $2 (0.2 \% + 0$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 18 V$ $1 mV$ $2 (0.2 \% + 0$ CC $20 \mu S - 36$ $0.0001 - 0.1 A / \mu S$ $0 - 3 A$ $0.01 mA$ $\pm (0.05 \% + 0.500 W$ $10 mW$ $\pm (0.2 \% + 0.500 W$ $10 mW$ $2 (0.2 \% + 0.500 W$ $10 mW$	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS)	82 0 - 3 A 0 - 3 A 250 V 0.15 V at 3 A 0 - 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 - 3 A 0.1 mA % FS)± (0.05 % + 0.05 % $0.05 \Omega - 10 \Omega$ 16 S 0.01 % + 0.08 S $\pm (0.2$ 0 - 3 A 0.01 % + 0.08 S $\pm (0.2$ 0 - 18 V 0 - 18 V 0.1 mV $\pm (0.02)$ 0 - 3 A 0.01 mA $\pm (0.02)$ 0 - 3 A 0.01 mA $\pm (0.02)$ 10 - 18 V 0.1 mV $\pm (0.02)$ 10 - 18 V 0.1 mV $\pm (0.02)$ 10 - 3 A 0.01 mA $\pm (0.02)$ 10 - 3 A 0.01 mA $\pm (0.05 - 25)$ 10 - 10 V 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A N 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W	82 * 22 0 - 80 0 - 3 A 250 W 0.15 V at 3 A 0 - 18 V 1 mV S) ± (0.05 % + 0.02 % F 0 - 3 A 0.1 mA S) ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 k 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV ± (0.05 % + 0 250 W 10 mW ± (0.05 % + 0 250 W 10 mW ± (0.1 mV 10 mW ± (0.1 % + 0	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 00 V 0 ~ 20 A 0 ~ 80 V 0 ~ 1 mV 0 ~ 00 V 0 ~ 00 V	82 * IT87 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 1 ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 10 ± (0.2 % 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 µS ~ 5 µS 0.0001 ~ 0.25 A / µS 0 ~ 18 V 0.1 mV ±(0.025% + 0.0 0 ~ 4.5 A 0.1 mA ±(0.05% + 0.0 300 10 m ± (0.2 % 0 ~ 310 ≈ 310 ≈ 5 A	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μ3 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 45 A 1 mA 05% FS) 0 ~ 45 A 1 mA 05% FS) W mW 6 + 0.2 % FS)</pre>
Dimension (W Input rating (0~40 °C) CV mode CV mode CR mode CR mode CP mode CP mode CP mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS)	82 0 ~ 3 A 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D) CC 0.0001 ~ 0.2 A /µ 0 ~ 18 V 0.1 mV ±(0.2 0 ~ 3 A 0.01 mA ± (0.2 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA 10 10 10 10 10 10 10 10 10 10	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS = S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈ 82 V	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV S)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μ S ± 100 ppm 0.0001 ~ 0.2 A / μ S 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 80	82 * IT87 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 μS ~ 5 μS 0.0001 ~ 0.25 A / μS 0 ~ 18 V 0.1 mV ±(0.025% + 0.025% + 0.025%) 0 ~ 18 V 0 ~ 25 M / µS 0 ~ 310 ≈ 310 ≈ 310	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μS 5 4 10 ppm 0.001 ~ 2.5 A / μS 0 ~ 80 V 1 mV 0.25% FS) 0 ~ 45 A 1 mA 05% FS) W nW 5 + 0.2 % FS) 0 W </pre>
Dimension (W Input rating (0~40 °C) CV mode CC mode CR mode CR mode CR mode CP mode Opp Opp OCP	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 18 V 1 mV 1 mV 2 (0.05 % + 0.5 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS)	82 0 ~ 3 A 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /µ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.02 10 ~ 3 A 0.01 mA ± (0.02 10 ~ 3 A 0.01 mA ± (0.02 10 ~ 3 A 0.01 mA 10 ~ 18 V 0.1 mV ±(0.02 10 ~ 3 A 0.01 mA 10 ~ 18 V 0.1 mV 10 ~ 18 V 0 ~ 3 A 0.01 mA 10 ~ 18 V 0.1 mV 10 ~ 18 V 10 ~ 18 V	* 183 * 573 mm IT87 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈ 82 V ≈ 85 ℃	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 80	82 * IT87 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 3 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 μS ~ 5 μS 0.0001 ~ 0.25 A / μS 0 ~ 18 V 0.1 mV ±(0.025% + 0.025% + 0.025%) 0 ~ 18 V 0 ~ 25 M / µS 0 ~ 310 ≈ 310 ≈ 310	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μS ± 100 ppm 0.001 ~ 2.5 A / μS 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 45 A 1 mA 05% FS) 0 ~ 45 A 1 mA 05% FS) W mW 6 + 0.2 % FS)</pre>
Dimension (W Input rating 0~40 °C) CV mode CV mode CR mode CR mode CR mode CP mode (Neasurement Measurement Measurement Measurement OPP OCP OVP	"H*D) Voltage Voltage Current Power MOV Range Resolution Accuracy Resolution Acc	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 18 V 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 0.2 % FS) 500 S / Res: 1 μS 0.001 ~ 1 A /μS 0 ~ 500 V 10 mV 0 ~ 30 A 0.1 mA .05 % FS) / 0.2 % FS) / 0.2 % FS)	82 0 ~ 3 A 0 ~ 3 A 250 V 0.15 V at 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 D CC 0.0001 ~ 0.2 A /µ 0 ~ 18 V 0.1 mV ±(0.2 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA ± (0.05 25 10 10 10 10 10 10 10 10 10 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A N 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈82 V ≈ 22 A ≈82 V ≈ 22 A ≈85 °C pecifications	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA 5)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 90 V 0 ~ 9	82 ⁴ IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 1 ± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 µS ~ 5 µS 0.0001 ~ 0.25 A / µS 0 ~ 18 V 0 ~ 2 % ≈ 310 ≈ 310 ≈ 310	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % I 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 5 5 6 7 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μS 0 ~ 80 V 1 mV 0.25% FS) 0 ~ 45 A 1 mA 05% FS) W mW 6 + 0.2 % FS) 0 W 1 mV 6 + 0.2 % FS 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m</pre>
Dimension (W Input rating 0~40 °C) CV mode CC mode CR mode CR mode CR mode CP mode CP mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Rise/fall slope Rasolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 5 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS)	82 0 ~ 3 A 0 ~ 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 3 A 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /µ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.02 10 10 10 10 10 10 10 10 10 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS : S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% +0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈ 82 V ≈ 85 °C pecifications ≈ 33 / 30 A	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA 5)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 90 V 0 ~ 9	82 * IT87 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.1 mA 16 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 μS ~ 5 μS 0.0001 ~ 0.25 A / μS 0 ~ 18 V 0.1 mV ±(0.025% + 0.0 0 ~ 4.5 A 0.1 mA ±(0.05% + 0.0 300 10 r ± (0.2 % 82 * 83 84 85 A ≈ 310 85 A ≈ 85 ≈ 85	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % H 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 6 - 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μS 0 ~ 80 V 1 mV 0.25% F S) 0 ~ 45 A 1 mA 05% F S) W nW 5 + 0.2 % FS) 0 W ≈ 50 A</pre>
Dimension (W Input rating (0~40 °C) CV mode CV mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Rise/fall slope Rise/fall slope Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution	82 * 183 * 5 IT8 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 3 A 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 3 A 0.00 mA ± (0.05 % + 0.500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W 10 mW	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS) / 0.2 % FS) / 0.3 A / 0.3 A / 0.3 A / / 0.3 A / / 3.3 A / / / 3.3 A / / / / / / / / / / / / /	82 0 ~ 3 A 0 ~ 3 A 0 ~ 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 3 A 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /μ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA 0 ~ 18 V 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA ± (0.02 0 ~ 3 A 0.01 mA ± (0.05 25 10 0 ~ 10 mA 0 ~ 18 V 0 ~ 10 mA ± (0.05 0 ~ 3 A 0 ~ 10 mA 10 mA	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% + 0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈82 V ≈ 85 °C pecifications ≈ 33 / 30 A	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA S)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 80 V 0 ~ 20 A 0 ~ 80 V 0 ~ 80 V 0 ~ 20 A 0 ~ 90 V 0 ~ 90	82 ⁴ IT87 0 ~ 1 0 ~ 1 0 ~ 1 0 ~ 1 0 ~ 1 0 ~ 1 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.05 Ω ~ 10 Ω 10 ± (0.2 % 0.05 Ω ~ 10 Ω 10 ± (0.2 % 0 ~ 18 V 0 ~ 1 mA ± (0.025 % + 0.1 300 10 m ± (0.2 % ≈ 310 ≈ 310 ≈ 85 ≈ 85 ≈ 85 ≈ 85	<pre>7 183 * 573 mm 723 80 V 45 A 9 W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % F 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 9 W mW 6 + 0.2 % FS) 6 - 3600 S / Res: 1 μS ± 100 ppm 0.001 ~ 2.5 A / μS 0 ~ 80 V 1 mV .025% FS) 0 ~ 45 A 1 mA 05% FS) W nW 6 + 0.2 % FS) 0 W 2 × 50 A 2 V 5 °C 2 ≈ 50 / 45 A V</pre>
Dimension (W Input rating 0~40 °C) CV mode CV mode CR mode	"H*D) Voltage Current Power MOV Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Range Resolution Accuracy Rise/fall slope Range Range Resolution Accuracy Range Range Resolution Accuracy Range Rang	82 * 183 * 57 IT8 0 ~ 5 0 ~ 3 A 500 W 0.54 V / 3 A 0 ~ 18 V 1 mV ± (0.05 % + 0.02 % FS 0 ~ 3 A 0.1 mA ± (0.05 % + 0.05 % FS 0.20 Ω ~ 10 Ω 16 bit 0.01 % + 0.08 S 500 W 10 mW ± (0.2 % + 0 CC 20 µS ~ 36 0.0001 ~ 0.1 A /µS 0 ~ 18 V 1 mV 0 ~ 18 V 1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0. 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W 10 mW ± (0.2 % + 0 500 W	8733B 500 V 0 ~ 30 A 5.4 V / 30 A 0 ~ 500 V 10 mV S) ± (0.05 % + 0.025 % 0 ~ 30 A 1 mA S) ± (0.05 % + 0.05 % 10 Ω ~ 7.5 KΩ 0.01 % + 0.0008 % 0.01 % + 0.0008 % 0.02 % FS) 0 ~ 30 A 0.1 mA .05 % FS) / 0.2 % FS) / 0.3 A (0.1 mA .05 % FS) / 0.2 % FS) / 0.2 % FS) / 0.3 A (0.2 % FS) / 0.3 A (0.3 A (0.	82 0 ~ 3 A 0 ~ 3 A 0 ~ 18 V 1 mV % FS)± (0.05 % + 0.02 % 0 ~ 3 A 0.1 mA % FS)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0.05 Ω ~ 10 Ω 16 S 0.01 % + 0.08 S ± (0.2 0 ~ 3 A 0.01 % + 0.08 S ± (0.2 0 ~ 18 V 0.0001 ~ 0.2 A /µ 0 ~ 18 V 0.1 mV ±(0.02 0 ~ 3 A 0.01 mA ± (0.02 10 10 10 10 10 10 10 10 10 10	* 183 * 573 mm IT87. 80 V 0 ~ 20 A W 1 V at 20 A 0 ~ 80 V 10 mV % FS)± (0.05% +0.025 % FS 0 ~ 20 A 1 mA % FS)± (0.05% + 0.05 % FS 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 250 W 10 mW % + 0.2 % FS) ynamic mode 20 μS ~ 360 5 uS 3 S 0.001 ~ 2 A /μS Measuring range 0 ~ 80 V 1 mV 5% + 0.025% FS) 0 ~ 20 A 0.1 mA % + 0.05 % FS) 0 W mW % + 0.1 % FS) Protection range ≈ 250 W ≈ 22 A ≈82 V ≈ 85 °C pecifications ≈ 33 / 30 A	82 * 22 0 ~ 3 A 250 W 0.15 V at 3 A 0 ~ 18 V 1 mV 5)± (0.05 % + 0.02 % F 0 ~ 3 A 0.1 mA 5)± (0.05 % + 0.05 % 0.05 Ω ~ 10 Ω 16 F 0.01 % + 0.08 S 250 W 10 mV ± (0.2 % + CC 00 S / Res: 1 μS ± 100 ppm 0.0001 ~ 0.2 A /μS 0 ~ 18 V 0.1 mV 0 ~ 3 A 0.01 mA ± (0.05 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W 10 mW ± (0.1 % + 0 250 W	183 * 573 mm 0 V 0 ~ 20 A / 1 V at 20 A 0 ~ 80 V 10 mV FS)± (0.05 % + 0.025 % FS) 0 ~ 20 A 1 mA FS)± (0.05 % + 0.05 % FS) 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S / V 0.2 % FS) 0 ~ 80 V 1 mV 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mA 0 ~ 80 V 1 mV 0 ~ 20 A 0 ~ 1 mA 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mA 0 ~ 20 A 0 ~ 1 mA 0 ~ 20 A 0 ~ 1 mA 0 ~ 20 A 0 ~ 1 mV 0 ~ 20 A 0 ~ 1 mA 0 ~ 20 A 0 ~	82 ⁴ IT87 0 ~ 1 0 ~ 1 0 ~ 300 0.14 V / 4.5 A 0 ~ 18 V 1 mV ± (0.05 % + 0.025 % 0 ~ 4.5 A 0.01 % + 0.08 S * 2 300 10 ± (0.2 % CC 20 μS ~ 5 μS 0.0001 ~ 0.25 A / μS 0 ~ 18 V 0.1 mV ±(0.025% + 0.0 0 ~ 4.5 A 0.1 mA ±(0.05% + 0.0 300 10 m ± (0.2 % 0 ~ 30 10 m ± (0.2 % 300 10 m 10 m ± (0.2 % 300 10 m 10 m	723 80 V 45 A W 1.4 V / 45 A 0 ~ 80 V 10 mV FS) ± (0.05 % + 0.025 % 0 ~ 45 A 1 mA % FS) ± (0.05 % + 0.05 % H 10 Ω ~ 7.5 KΩ bit 0.01 % + 0.0008 S 0 W mW % + 0.2 % FS) 5 ± 100 ppm 0.001 ~ 2.5 A /μS ± 100 ppm 0.001 ~ 2.5 A /μS 0 ~ 80 V 1 mV .025%FS) 0 ~ 45 A 1 mA 05%FS) W mW % + 0.2 % FS) 0 W ≈ 50 A

IT8800 Multi-function electronic load

IT8800 programmable high-accuracy electronic load has especial LED mode which supports LED power drive test and provide programmable parameters for LED current simulation. The power of single channel can meet your various needs, which ranges from 150W to 55KW and the highest power is 600KW,it also has OVP/OCP/OPP/OTP.IT8800 is with the resolution of voltage and current is 0.1mV and 0.01mA, adjustable current rising speed,0.0001A/us-2.5A/us adjustable space. CC/CV/CR/CP dynamic working mode, the highest testing speed of current and voltage is 50KHZ,the data memory is 100 sets. It supplies external analog and built-in RS232.USB, and GPIB to make your control the instrument more conveniently by software.

Model	Power	Voltage	Current
IT8812B	200W	500V	15A
IT8813B	750W	500V	30A
IT8814B	1200W	500V	60A
IT8816B	2500W	500V	100A
IT8817B	3600W	500V	120A
IT8818B	5KW	500V	150A

Model	Power	Voltage	Current	
IT8811	150W	120V	30A	
IT8812C	250W	120V	60A	
IT8813C	750W	120V	120A	
IT8814C	1500W	120V	240A	
IT8816C	3KW	120V	400A	
IT8817C	4500W	120V	600A	
IT8818C	6KW	120V	720A	
IT8818D	6KW	60V	700A	
IT8819H	7500W	800V	80A	
IT8830	10KW	120V	500A	
IT8831	15KW	120V	750A	
IT8832	20KW	120V	1000A	
IT8833	25KW	120V	1500A	

*High power electonic load(10KW-55KW)

Model	Power	Voltage	Current
IT8830B	10KW	500V	200A
IT8831B	15KW	500V	300A
IT8832B	20KW	500V	400A
IT8833B	25KW	500V	500A
IT8834B	30KW	500V	600A
IT8835B	35KW	500V	700A
IT8836B	40KW	500V	800A
IT8837B	45KW	500V	900A
IT8838B	50KW	500V	1000A
IT8839B	55KW	500V	1100A

*Highest power of single electronic load reach 600KW; customized-design is acceptable.

For higher power/voltage/current test, please contact ITECH.

*High power electonic load(10KW-55KW)

Model	Power	Voltage	Current
IT8919H	7.5KW	800V	80A
IT8830H	10KW	800V	100A
IT8831H	15KW	800V	150A
IT8832H	20KW	800V	200A
IT8833H	25KW	800V	250A
IT8834H	30KW	800V	300A
IT8835H	35KW	800V	350A
IT8836H	40KW	800V	400A
IT8837H	45KW	800V	450A
IT8838H	50KW	800V	500A
IT8839H	55KW	800V	600A

Features

- VFD display
- Dynamic mode: up to 25 KHz
- Measurement resolution: 0.1mV, 0.01mA
- OVP/OCP/OPP/OTP and reverse polarity protection
- Measurement speed: up to 50KHz
- Four operation mode:CC/CV/CP/CR
- Remote sense
- Rotary knob, making the operation more easier
- Battery test function
- Memory capacity: 100 sets
- Adjustable current rising slope:0.001A/µS~2.5A/µS
- Short-circuit test function
- Dynamic test, auto-test
- With skid-resistant tripod and portable firm chassis
- Controlled by intelligent fans
- Built-in Buzzer as alarm signal
- Power off memory function
- CR-LED test
- OCP/OPP test
- Voltage rising speed test
- External analog control
- Support VISA/USBTMC/SCPI communication protocol

Dynamic Mode: Up To 25KHz

The transient test allows switching between two different load values. The function is used to test dynamic characteristic of power supply.

Continuous Transient Operation

Adjustable Rising/Falling Speed Of Current

List mode allows you to generate a complex current sequence. Moreover, the mode change can be synchronized with an internal or external signal, to accomplish dynamic and precise test.

A list file includes following parameters: file name, step

- Built-in RS232/USB/GPIB communication interface
- Controlled by computer via software

counts (range 2-84), time width of single step (0.00002s~3600s), step value and slope. The LIST function can make many kinds of complex sequences, to meet complicated test requirements. The slope range is 0.0001A/us~2.5A/us.

Remote Sense/External Trigger/External Analog Control Terminals

CR-LED Process

Unique LED mode can provide LED power test, can be used in LED power simulation.

As we all know the LED constant power output waveform usually have large current ripple. This is because of the ripple, traditional CR mode can't simulate the actual characteristic of LED driver, its testing current and voltage will shake.

Based on traditional CR mode, CR-LED mode adds the setting item of diode break-over voltage. Only when the input voltage is above the set value, will the DC load start to work. Thus, the IT8800 series can simulate the actual characteristic of LED.

Voltage Rising/Falling Time Test

IT8800 provides unique measurement function to test voltage rising/falling time.

It can calculate the time from one voltage to another voltage. No need to use the oscilloscope. Voltage

IT8800 Electronic Load 14

Communication Function

Built-in standard RS232 /USB/GPIB communication interface, which can meet your different requirements. And the communication speed is faster than its the device with communication cable.

Auto-test Function

IT8800 auto-test function can simulate many kinds of testing. It totally can edit 10 test files, and can make connection between one file and anothe Also you can chose the condition to stop the test: stop when testing pass or fail. Its adjustable current speed rate of rising and falling can make auto-test simulate various kinds of test waveform.

rising time is an important index of a device.

Current Monitor

IT8800 series products allows the users to monitor actual current through I-monitor terminal. Users could connect an oscilloscope to observe actual current. It will generate at 0-10V analog signal to represent to 0-100% rated current of the front panel.

OCP/OPP Test Process

OPP test process: To start a OPP test, press " shift+ trigger" to edit an OPP file.When the input voltage has reached VON point, power will begin to work after a delay time. The power value will increase by a step size at regular intervals.

Simultaneously, the DC load will judge whether the input voltage is lower than OPP voltage (you need to set). If it is ,then the present current value will be compared to see if it is in the current range you've set, in this range, the power will continue to increase within the cut-off current range. And then compare OPP voltage with input voltage too.

OCP test process: To start an OCP test, press " shift +trigger" to enter OCP editing screen. After input voltage reaches Von point, the DC load start to draw a current from the source after a delay time. The current value will increase by a certain step size at regular intervals. Simultaneously, the DC load will judge whether the input voltage is lower than OCP voltage you've set. If it is, then the present current value will be compared to see if it is in the current range you've set. Within the range, the OCP test will Pass or Fail.

IT8800 series programmable DC load, its maximum voltage is 800V, maximum current is 1500A, and its maximum power of single unit up to 55KW.More higher power of special specification can be customized design.

IT8811(120V/30A/150W)

Panel Operation

It is very convenient to operate the IT8800 series electronic load panel, its shot-cut buttons are as follows: short circuit test, dynamic test, LIST test, data storage, data recalls, battery test, auto-test, test stop, test trigger, over current test, over power test.

Parameters Setting

It is quite convenient to set the parameters of IT8800 series, the users can use the panel button, to adjust pulsating knob, also can adjust the cursor around left and right keys, which to adjust stepper parameter values. This will eliminate the tedious steps of setting step.

Working Mode

The working mode of IT8800 series electronic load has CC, CV, CP, CR, It will make you easy to simulate various characteristics of load, which can save cost greatly. It support OVP,OCP,OPP,OTP,LRV, and it can set the protection point of current, voltage, and power. In every condition, it will make auditory alarm and cut off the circuit to ensure the safety during test.

Remote Sense Function

In CC, CV, CR and CP mode, when load consume high current, it will cause large voltage-drop on the connection wires between tested instrument and terminals of load. Using remote sensing, you can sense the voltage at the power supply's terminals, effectively removing the effect of the voltage drop in the connection wires.

Remote operation: SENSE(+) and SENSE(-) are remote input terminals, in order to avoid the voltage-drop because of too long wires, remote test allows testing on the input terminals to improve the test accuracy. Wire connection diagram of remote test is as follows:

Support Living and Latch modes

IT8800 series support with loading voltage setting, and it offers two kinds of load modes. Choosing Living means working goes after status, when choosing Latch, it means work load point latch with loading status. It can meet different test requirements.

IT8800 series can keep common used paramaters in 100 sets non-volatile memory. IT8800 series products test the battery capability in CC mode. Make a program to set the stop conditions. There are three stop conditions can be chosen: stop voltage, stop capacity and stop timer. The discharge process of electronic load is terminated if the system checks the battery reaches the specified value or under an insecurity state.

In testing procedure, the battery voltage, discharge current, discharge time and discharged capability will display on the front panel.

It is convenient and quick to recall.

The rear panel of IT8800 series has voltage failure indicate terminal, when load in the status of OVP or LRV, the indicate terminal of VF foot voltage failue will output high level.

IT8800 series load allows the users to control current or voltage through the external analog terminals (EXT PRG). Input a 0-10V analog to adjust 0-100% rated voltage and current.

IT8811/12 Specifications

		IT	8811	IT8	812B	IT8	812C	IT88	19H
Rated value	Input voltage		~ 120 V	0 ~	500 V	0 -	~ 120 V	0~8	V00
(0~40 ℃)	Input current	0~3 A	0 ~ 30 A	0~3A	0 ~ 15 A	0~6A	0 ~ 60 A	0~8A	0~80A
	Input power	15	0 W	20	00 W 00	2	50 W	750	WO
	Minimum operation voltage	0.11 V at 3 A	1.1 V at 30 A	0.45 V at 3 A	4.5 V at 15 A	0.18 V / 6 A	1.8 V / 60 A	0.28V/8A	2.8V/80A
	Range	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V	0 ~ 18 V	0 ~ 120 V	0.1~80V	0.1~800V
CV mode	Resolution	1 mV	10 mV	1 mV	10 mV	1 mV	10 mV	1mV	10mV
	Accuracy	±(0.05%+0.025%	% ±(0.05% +0.025%	±(0.05% +0.025%	±(0.05%+0.025%	6 ±(0.025% +0.05	% ±(0.025% +0.05%	± (0.05%+	+0.05%FS)
		FS)	FS)	FS)	FS)	FS)	FS)		
	Range	0 ~ 3 A	0 ~ 30 A	0~3A	0 ~ 15 A	0~6A	0 ~ 60 A	0~8A	0~80A
CC mode	Resolution	0.1 mA	1 mA	0.1 mA	1 mA	0.1 mA	1 mA	1mA	10mA
	Accuracy		± (0.0	5 % + 0.05 % FS)		±(0.05% +0.05%F	S) ±(0.05% +0.1%FS)	± (0.05%+	+0.05%FS)
	Range	0.05 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.3 Ω ~ 10 Ω	10 Ω ~ 7.5 Kg	0.05 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.030~100	10Q~7.5KQ
CR mode	Resolution				16	bit			
	Accuracy	0.01% + 0.08 S	0.01 % + 0.0008 \$	0.01% + 0.08 S	0.01% + 0.0008	S 0.01 % + 0.08 S	6 0.01% + 0.0008 S	0.01%+0.08S	0.01%+0.000
	Range	1	50 W	2	00 W		250 W	750	woo
CP mode	Resolution			10 mW					W
	Accuracy	0.1 %	+ 0.1 % FS		+ 0.1 % FS	0.2	% + 0.2 % FS		.25%FS
2			C. Charles C. S. Decord and C. S. S.	namic mode				10	
		C	00	CC	3	C	С	C	C
Dynamic mode	T1&T2	1		3600 S / Res: 1 µ	100				
•	Accuracy		-	S ± 100 ppm	-				
	Rising/decending	90.0001~0.25A/µS		0.0001~0.1A/µS	0.001~1A/µS	0 0001~0 25A/u	S 0.001~2.5A/µS		
	slope	erecer endertpe	Me	easuring range					
V Measurement	Range	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V	0~18 V	0 ~ 120 V	0~80V	0~800V
		0.1 mV	1 mV	1 mV	10 mV	0.1 mV	1 mV	1mV	10mV
	Accuracy			% + 0.025 % FS)					+0.025%FS)
	Range	0~3A	0 ~ 30 A	0~3A	0 ~ 15 A	0~6A	0 ~ 60 A	0~8A	0~80A
C Measurement	Resolution	0.01 mA	0.1 mA	0.01 mA	0.1 mA	0.1 mA	1 mA	1mA	10mA
	Accuracy	A REPORT OF A R	% + 0.05 % FS)	A CONTRACTOR OF A CONTRACTOR	6 + 0.05 % FS)		% + 0.1 % FS)		+0.05%FS)
	Range	-	50 W		00 W		50 W	14 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	0.05%F3)
P Measurement	Resolution					-			W
	Accuracy	+ (0.1	% + 0.1 % FS)		0.1 % + 0.1 % F	+(0.2)	% + 0.2 % FS)		.25%FS
		1 (0.1		Protection		2) 1(0.2		0.270+0	.2070F3
OPP		≈1	60 W		210 W	8	260 W	~ 71	550W
OCP	1	≈3.3 A	≈33 A	≈3.3 A	≈6.5 A	≈6.6 A	≈66 A	10	
OVP			130 V		530 V	ALL CONTRACTORS	≈130 V	≈8.8A	≈88A
OTP				≈85 °C	530 V		-130 V		50V
VII				ecification				≈8	5°C
Short circuit	(CC)	≈3.3 / 3 A	≈33 / 30 A	≈3.3 / 3 A	≈16.5 / 15 A	≈6.6 A	≈66 A	- 0 0/04	00/00 4
Short of out	(CV)	3.373 M	33730 A		10.57 15 M	-0.0 A	- 00 A	≈8.8/8A	≈88/80A
		11: 	ac	0 V				≈0'	T
Input impodance	(CR)		35 mΩ		00 mΩ		30 mΩ		5mΩ
Input impedance		30	00 ΚΩ		MΩ	3	00 ΚΩ	2M	DEC.
Dimension			214 5 mm	* 88 2 mm * 354 6 m	nm			121	J

*1 Voltage/Current input value is more than 10%FS (FS means full range) *2Voltage/Current input value is more than 10%FS *3 Rise/fall slope:rise slope of 10%~90% current when current rising from 0 to max value

IT8811/12 Electronic Load Installation Diagram (1/2 2U,150W~300W)

ITECH ELECTRONICS Your Power Testing Solution

IT8800 Electronic Load 18

IT8813/14 Specifications

			8813C		IT8813B		IT8814C		814B
Rated value	Input voltage	had strand left	120V		0~500V		~120V		500V
(0~40°C)	Input current	0~12A	0~120A	0~3A	0~30A	0~24A	0~ 240A	0~6A	0~60A
	Input power	Construction of the second s	0 W		750W		1500W	12	200W
	Minimum operation voltage	0.12V at 12A	1.2V at 120A	0.36V/6A	3.6V/60A	0.15V at 24A	15V at 240A	0.36V/6A	3.6V/60A
	Range	0~18V	0~120V	0~50V	0~500V	0~18V	0~120V	0~50V	0~500V
CV mode	Resolution	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV
	Accuracy	±(0.025%+0.05%FS	s) ±(0.025%+0.05%尺	s) ±(0.025% +0.05%	S) ±(0.025% +0.05%	S) ±(0.025% +0.05%	FS) ±(0.025%+0.05%FS	6) ±(0.025% +0.05%)	FS)±(0.025%+0.05%
	Range	0~12A	0~60A	0~3A	0~30A	0~24A	0~240A	0~6A	0~60A
CC mode	Resolution	1mA	1mA	0.1mA	1mA	1mA	10m A	0.1 m A	1mA
	Accuracy	±(0.059	%+0.1%FS)	±(0.05%+	+0.05%FS)	±(0.05%	+0.1%FS)		
	Range	0.02Ω~10Ω	10Ω~7.5ΚΩ	0.15Ω~10Ω	10Ω~7.5KΩ	0.01Ω~10Ω	10Ω~7.5KΩ	0.1Ω~10Ω	10Ω~7.5ΚΩ
CR mode	Resolution				1	6bit			
	Accuracy	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S
	Range	75	50W		750W		1500W		1200 W
CP mode	Resolution	10)mW	10mW			100mW	1	00mW
	Accuracy	0.2%+	0.2% FS		6+0.2% FS		+0.2% FS	0.2%	6+0.2%FS
				1		nic mode			
		CC		C	C		c	(cc
Dynamic mode	T1&T2					00S/Res:1µS			
Dynamic mode	Accuracy				-	100ppm			
	NAMES OF BOODS	0.0001~0.25A/µS	0.001~254//15	0.0001~0.1 A/µS		0.001~0.25A/µ	S 0.01~2.5A/µS	0.0001~0.1A/µS	0.001~1A/µS
	Thomy documenting chope	0.0001-0.20400	0.001-2.0400	0.0001-0.1Ap	•	ring range	0.01°2.0Np0	0.0001-0.17400	0.001-17400
V Hoosuramont	Denes	0-191/	0~120V	0~501/		0~18V	0~120V	0~50V	0~500V
V Measurement	Range Resolution	0~18V 1mV	and the second se	0~50V	0~500V	0.1mV			
		mv	10 m V	1mV	10mV		1mV	1mV	10mV
	Accuracy	0.424	0-120 4	0-24	-	+0.025%FS)	0 240 4	0-64	0~604
0. He server and	Range	0~12A	0~120 A	0~3A	0~30A	0~24 A	0~240A	0~6A	0~60A
C Measurement	Resolution	1mA	10mA	0.1mA	1mA	1mA	10mA	0.1mA	1mA
	Accuracy		+0.1%FS)		%+0.05%FS)	±(0.05)	%+0.1%FS)		%+0.05%FS)
	Range		50W		750W		1500W		200 W
P Measurement	Resolution	C 1997)mW		10mW		100m W		00m W
	Accuracy	±(0.2%	+0.2%FS)	±(0.2%	6+0.2%FS)	±(0.29	%+0.2%FS)	±(0.2%	%+0.2%FS)
	pr				Protec	tion range			
OPP		≈7	60W		≈ 760W		≈1550W	8	1250W
OCP		≈13.2 A	≈132 A	≈3.3A	≈33A	≈ 26.4A	≈ 264A	≈6.6A	≈66A
OVP		≈1	30V		≈ 530V		≈130V	1	≈530V
OTP					8	85 °C			
					Specif	ication			
Short circuit	(CC)	≈13.2/12A	≈ 132/120 A	≈3.3/3A	≈ 33/30A	≈ 26.4/24A	≈ 264/240A	≈6.6A	≈66A
	(CV)		Ú			0V			
	(CR)	≈10 mΩ	≈ 10 mΩ	≈120mΩ	≈120mΩ	≈6 mΩ	≈6 mΩ	≈ 60mΩ	≈ 60mΩ
Input impedance		30	οοκα		1MΩ	:	300ΚΩ		1ΜΩ
Dimension						3.3mm* 580mm			

*1 Voltage/Current input value is more than 10%FS (FS means full range) *2Voltage/Current input value is more than 10%FS

*3 Rise/fall slope:rise slope of 10%~90% current when current rising from 0 to max value

IT8813/14/16 /13B/14B/16B/13C/14C/16C Electronic Load Installation Diagram (3U,750W~3000W)

Unit: mm

IT8816/17 Specifications

Rated value	Input voltage	ITE	3816C	1	T8816B	IT	3817C	IT 88	17B
0~40 ℃)	Input current	0~1	20V	0	0~500∨	0~1	120V	0~5	00V
	Input power	0~48A	0~480A	0~10A	0~100A	0~60A	0~600A	0~12A	0~120A
	Minimum operation voltage	300	0 W		2.5KW	45	00W	3.6	KW
	Range	0.2V at 48 A	2V at 480 A	0.3V at 10A	3V at 100A	0.18V at 60A	1.8V at 600A	0.3V/12A	3V/120A
CV mode	Resolution	0~18V	0~120V	0~50V	0~500V	0~18V	0~120V	0~50V	0~500V
	Accuracy	1mV	10mV	1mV	10mV	1mV	10mV	1mV	10mV
		±(0.025%+0.05%FS)	±(0.025%+0.05%F	S) ±(0.025% +0.05%	GFS) ±(0.025% +0.05% FS	S) ±(0.025% +0.05% FS)	±(0.025%+0.05%FS	6) ±(0.025% +0.05%FS) ±(0.025% +0.05% F
	Range								
CC mode	Resolution	0~48A	0~480A	0~10A	0~100A	0~36A	0~360A	0~12A	0~120A
	Accuracy	1mA	10mA	1mA	10mA	1mA	10mA	1mA	10m A
	Range	±(0.059	%+0.1%FS)	±(0.05%	+0.05%FS)	±(0.1% +	0.1%FS)	±(0.05%	+0.05%FS)
CR mode	Resolution	0.01Ω~10Ω	10Ω~7.5ΚΩ	0.03Ω~10Ω	10Ω~7.5ΚΩ	0.01Ω~10Ω	10Ω~7.5ΚΩ	0.03Ω~10Ω	10Ω~7.5ΚΩ
	Accuracy				1	6bit			
	Range	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S	0.01% +0.08S	0.01% +0.0008S
CP mode	Resolution	30	00W	1	2.5KW	45	00W	3	.6KW
	Accuracy			and the second sec		00mW			
	•	0.2%+0.2%FS		0.2% +0.2% FS		0.2%+0.2%FS		0.2%+0.2%FS	
					Dynamic mo				
Dynamic mode	Т1&Т2	CC		CC		cc		cc	
bynamie mode	Accuracy			20 µS~3600S /Res:1 µS					
	Rising/decending slope			5µS±100ppm					
	rating to can any cope	0.001~0.25A/µS	0.01~2.5A/uS	0.001~0.1A/µS		0.001~0.25A/µS	0.01~2.5A/uS	0.001~0.1A/µS	0.01~1A/µS
V Measurement	Range		erer mertpe		Measuring r			0.001 01.010	elet inthe
1 modulation.	Resolution	0~18V	0~120V	0~50V	0~500V	0~18V	0~120V	0~50V	0~500V
	Accuracy	1mV	10mV	1mV	10m V	1mV	10mV	1mV	10mV
	1933		101111			+0.025%FS)	10m		101111
C Measurement	Range Resolution	0~24A	0~240A	0~10A	0~100A	0~60A	0~600A	0~12A	0~120A
C Micaburchichi		1mA	10m A	1mA	10m A	1mA	10m A	1mA	10mA
	Accuracy	±(0.05% -			%+0.05%FS)		+0.1%FS)		+0.05%FS)
P Measurement	Range Resolution	•	00W	-	2.5KW		00W	-	5KW
r measurement		50	0000			0mW	0000	0.0	
	Accuracy	+(0.2% +	0.2%FS)	+(0.29	%+0.2%FS)		+0.2%FS)	+(0.2%)	+0.2%FS)
0.00		1(0.2/0+	0.2%F3)	1(0.2)			r0.270F3)	1(0.2%)	+0.2%-3)
OPP		- 20	004		Protection r		EEOM	~ 0	CEOW
OCP			50W		≈ 2550W		1550W	1	650W
OVP		≈26.4A	≈264A	≈11A	≈110A	≈ 66A	≈660A	≈13.2A	≈132A
OTP		≈1	30V		≈530V		130V	~	530V
						85 ℃			
Short circuit	(CC)				Specification				
	(CV)	≈26.4/24A	≈264/240A	≈11A	≈110A	≈ 66/60A	≈660/60A	≈13.2A	≈132A
						0V			
	(CR)								
Input impedance		≈5mΩ	≈5mΩ	≈30mΩ	≈30mΩ 1MΩ	≈3mΩ	≈3mΩ 00KΩ	≈25mΩ	≈25mΩ

*1 Voltage/Current input value is more than 10%FS (FS means full range) *2Voltage/Current input value is more than 10%FS *3 Rise/fall slope:rise slope of 10%~90% current when current rising from 0 to max value

IT8817 / 17B / 17C Electronic Load Installation Diagram (6U, 3.6KW~4.5KW)

IT8818 Specifications

Rated value	Input voltage	П	8818C	IT88	8 B		
(0~40°C)	Input current	0 -	- 120 V	0 ~ 500 V			
	Input power	0 ~ 48 A	0 ~ 480 A	0 ~ 15 A 0 ~ 150 A			
	Minimum operation voltage	6	KW	5KW			
	Range	0.15 V at 48 A	1.5 V at 480 A	0.3 V at 15 A	3 V at 150 A		
CV mode	Resolution	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V		
	Accuracy	1 mV	10 mV	1 mV	10 mV		
		± (0.025 % + 0.05 % FS)					
	Range						
CC mode	Resolution	0 ~ 48 A	0 ~ 480 A	0 ~ 15 A	0 ~ 150 A		
	Accuracy	1 mA	10 mA	1 m A	10 m A		
	Range	± (0.05	% + 0.1 % FS)	± (0.05	% + 0.05 % FS)		
CR mode	Resolution	0.005 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.03 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ		
	Accuracy			16bit			
	Range	0.01% + 0.08 S	0.01 % + 0.0008 S		0.01% + 0.0008 S		
CP mode	Resolution		ĸw		5 KW		
	Accuracy		0 mW		00 mW		
			+ 0.2 % FS		+ 0.2 % FS		
				Dynamic mode			
ynamic mode	T1&T2	cc			с		
ynamie mode	Accuracy			3600 S / Res: 1 µS			
	Rising/decending slope			± 100 ppm			
	rising secondary supp	0.001 ~ 0.25 A / u	S 0.01 ~ 2.5 A /µS		μS 0.01~1A/μS		
/ Measurement	Range			Measuring range			
measurement	Resolution	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V		
	Accuracy	1 mV	10 mV	1 mV	10 mV		
C Measurement			INSTRUCTION	6+0.025%FS)			
/ Measurement	Resolution	0 ~ 48 A	0 ~ 480 A	0 ~ 15 A	0 ~ 150 A		
	Accuracy	1 mA	10 mA	1 mA	10 m A		
Measurement			% + 0.05 % FS)		6+0.05 % FS)		
Measurement	Resolution		KW	5 KW			
			0 mW	100 mW			
	Accuracy		% + 0.2 % FS)	± (0.2 % + 0.2 % FS)			
		1 (0.2	N + 0.2 /01 3)	Protection range			
OPP		~ 6	050 W		5050 W		
OPP							
OCP		≈ 52.8 A	≈ 528 A	≈16.5 A ~	≈165 A		
OVP	2	8	130 V		530 V		
OTP				85 °C			
Object in 1	(00)	~ 50.0 Å	~ 500 Å	Specification	- 465 4		
Short circuit	(00)	≈ 52.8 A	≈528 A	≈16.5 A	≈165 A		
	(CV)			0 V			
	(CR)	≈3 mΩ	≈3 mΩ 00 KΩ	≈20 mΩ	≈20 mΩ MΩ		
nput impedance							

*1 Voltage/Current input value is more than 10%FS (FS means full range) *2Voltage/Current input value is more than 10%FS *3 Rise/fall slope:rise slope of 10%~90% current when current rising from 0 to max value

IT8818/18B/18C/18D Electronic Load Installation Diagram (6U,5KW~6KW)

Unit: mm

IT8830 Specifications

		IT	3830	IT	8830B	IT8	830H
Rated value	Input voltage	0 ~	120 V	0 ~	500 V	0 ~	800 V
0~40°C)	Input current	0 ~ 50 A	0 ~ 500 A	0 ~ 20 A	0 ~ 200 A	0 ~ 10 A	0 ~ 100 A
	Input power	10	KW	10	KW	10) KW
N C	Minimum operation voltage	0.1 V at 50 A	1 V at 500 A	0.3 V at 20 A	3 V at 200 A	0.3 V at 10 A	3 V at 100 A
	Range	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V	0 ~ 80 V	0 ~ 800 V
CV mode	Resolution	1 mV	10 mV	1 mV	10 mV	1 mV	10 mV
	Accuracy	±(0.025%+0.05%FS	±(0.025%+0.05%FS)	±(0.025%+0.05%FS)	±(0.025%+0.05%FS)	±(0.025%+0.05%FS)	±(0.025%+0.05%FS)
	Range	0 ~ 50 A	0 ~ 500 A	0 ~ 20 A	0 ~ 200 A	0 ~ 10 A	0 ~ 100 A
CC mode	Resolution	1 mA	10 m A	1 mA	10 mA	1 mA	10 m A
	Accuracy	± (0.05	% + 0.1 % FS)		±(0.05%+	-0.05%FS)	
	Range	0.005 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.02 Ω ~ 10 Ω	10 Ω ~ 7.5 ΚΩ	0.05 Ω ~ 10 Ω	10 Ω ~7.5 ΚΩ
CR mode	Resolution			1	6 bit		
	Accuracy	0.01% + 0.08 S	0.01% + 0.0008 S	0.01% + 0.08 S	0.01% + 0.0008 S	0.01% + 0.08 S	0.01% + 0.0008 S
	Range			1	0 KW		
CP mode	Resolution				1 W		
	Accuracy	0.2 % +	0.2 % FS	0.2 %	+ 0.2 % FS	0.2 %	+ 0.2 % FS
				Measuri	ng range		
V Measurement	Range	0 ~ 18 V	0 ~ 120 V	0 ~ 50 V	0 ~ 500 V	0 ~ 80 V	0 ~ 800 V
	Resolution	1 mV	10 mV	1 mV	10 mV	1 mV	10 m V
	Accuracy			± (0.025 %	6 + 0.025 % FS)		
	Range	0 ~ 50 A	0 ~ 500 A	0 ~ 20 A	0 ~ 200 A	0 ~ 10 A	0 ~ 100 A
C Measurement	Resolution	1 mA	10 m A	1 mA	10 mA	1 mA	10 m A
	Accuracy	± (0.05 %	+ 0.05 % FS)	± (0.05 %	6 + 0.05 % FS)	± (0.05 %	6 + 0.05 % FS)
	Range	10	KW	10) KW	10	KW
P Measurement	Resolution			•	I W		
	Accuracy	± (0.2 %	+ 0.2 % FS)	± (0.2 °	% + 0.2 % FS)	± (0.2 %	6 + 0.2 % FS)
				Prote	ection range		
OPP				*	10.1 KW		
OCP		≈55 A	≈ 550 A	≈22 A	≈ 220 A	≈11 A	≈110 A
OVP		≈ 1	30 V	8	530 V	*	850 V
OTP				8	85 °C		
				Sp	ecification		
Short circuit	(CC)	≈55 A	≈550 A	≈22 A	≈220 A	≈11 A	≈110 A
	(CV)				0 V		
	(CR)	≈2	mΩ	1	15 mΩ	≈3(OmΩ
Input impedance			0 ΚΩ		1 ΜΩ	1	ΜΩ
Dimension			2 U		12 U		2 U

*1 Voltage/Current input value is more than 10%FS (FS means full range) *2Voltage/Current input value is more than 10%FS

IT8830/30B/30H Electronic Load Installation Diagram (12U,10KW)

Features

- VFD Display
- Multiple operating modes: CC/CV/CR/CP/CC+CV/CR-LED
- CC Dynamic mode up to 20KHz
- Voltage and current measurement speed: 50KHz
- Unique CR-LED mode with perfect PWM-LED driver test solution
- Adjustable frequency, duty ratio PWM dimming output (frequency: 20Hz-2KHz)

IT8912E LED Electronic Load

22

IT8912E programmable electronic load hardware circuit can realize simulation of LED current for PWM dimming test and current ripple and surge current tests. The voltage current measurement speed can be as high as 50KHZ and the programmable panel can realize OCP/OPP test. Multiple operating modes and powerful programming functions.

CR-LED Mode

The unique CR-LED mode developed by IT8912E is especially applicable for LED driver test. The user only needs to set the operating voltage、 current and coefficient, the real output parameters of the LED driver can be measured. Different from universal electronic load, IT8912E adopts pure hardware circuit design without software operation by MCU module, thus

increasing the speed and stability of CR mode control circuit, solving voltage and current jitter during LED driver test, increasing frequency width and helping to realize PWM dimming test.

- Easy programmable parameter setting, applicable for simulating LED lights with different characteristics
- Adjustable current rising and falling slope
- OCP and OPP test functions
- Battery discharge mode, auto test, short circuit and measure test functions
- Support VISA/USBTMC/SCPI communication protocols
- Built-in GPIB/RS232/USB communication interfaces

CC+CV Model

The fixed current output function refers to the " CV+CC" LED "CV" mode, which is suitable for the use of IC or series connected current limiting resistors for collocation LED, and when the output current exceeds the rated value to set current (CC) mode, it can be used for the design of direct drive LED.

Dynamic Test Function(Tran)

The operation of dynamic load is periodic switch between two levels and the power supply regulation and transient response are in high and low current levels. With the change of lasting time and ascending and descending rate, the output voltage waveform can be monitored.

Dynamic mode of electronic load tests the transient response time of power, reflecting the ability of the power for keeping itself stable during the step change of load current.

ITECH ELECTRONICS Your Power Testing Solution

IT8912E Specifications

			120125	
Ingest P			1T8912E 0 ~ 500 V	
Input rating	Voltage		0 - 000 V	0 - 15 A
(0~40 ℃)	Current	0 ~ 3 A	000.14	0 ~ 15 A
	Power		300 W	
	Minimum operating voltage Temperature	e 0.72 V / 3 A		3.6 V / 15 A
014	Temperature coefficient		≤ 100 ppm / ℃	
CV	Range		0 ~ 500 V	
	Resolution		10 mV	
	Precision		± (0.05 % + 0.05 % FS)	
	Range	0~3A		0 ~ 15 A
CC	Resolution	0.1 mA		1 mA
	Precision	± (0.05 % + 0.1 % FS)		± (0.05 % + 0.05 % FS)
	Range	Uo-L		Uo-H
CR-LED	Option	Uo lo coef Rd	Uo	lo coef Rd
	Range	0 ~ 100 V 0 ~ 15 A 0.01 ~ 1 0.08 ~ 30 Ω		0~15 Α 0.01~1 1.8~1600 Ω
	Range	0.3 Ω ~ 300 Ω 【0 ~ 100 V / 0 ~		8 Ω ~ 7.5 KΩ 【0 ~ 500 V / 0 ~ 3 A】
CR*1	Resolution		16 bit	
	Precision	0.2 % + 0.01 S *2		0.2 % + 0.001 S *3
	Range		300 W	
CP*4	Resolution		100 mW	
	Precision		0.2 % + 0.2 % FS	
			Dynamic model	
	T1&T2		20 µS ~ 3600 S / Res: 1 µS	
	Precision		5 µS ± 100 ppm	
Dynamic mode	Rise / fall *5	0.0001 ~ 0.3 A / µS		0.001 ~ 1.5 A / µS
	Minimum rise *6 time	≈10 µS		≈10 µS
			PWM Dimming output	
Output voltage			10 V	
Frequency range			20 Hz ~ 2 KHz	
Duty cycle			10 % ~ 100 %	
			Measurement range	
Voltage value	Range		0 ~ 500 V	
	Resolution		10 mV	
	Precision		± (0.025 % + 0.025 % FS)	
Current value	Range	0~3 A		0 ~ 15 A
	Resolution	0.01 mA		0.1 mA
	Precision		± (0.05 % + 0.05 % FS)	
Power	Range		300 W	
Back read value			10 mW	
	Precision		± (0.2 % + 0.2 % FS)	
			Protection range	
OPP			≈ 310 W	
OCP		≈3.3 A		≈16.5 A
OVP			≈530 V	
OTP			≈ 85 °C	
			Specifications	
Short circuit	CC	≈3.3 A	opositionio	≈16.5 A
and the second	cv	0 V		0 V
	CR	U V	≈240 mΩ	V V
Input terminal in				
Dimension (V			≈ 500 KΩ 214.5 mm * 88.2 mm * 354.6 mm	
Dimension (V	n D/		214.5 mm 00.2 mm 354.0 mm	

- *1 Voltage / current input value is not less than 10%FS (FS full range)
- *2 Range of resistance to read value: (1/(1/R+(1/R)*0.2%+0.01),1/(1/R-(1/R)*0.2%-0.01)
 - a) Voltage input value is less than 10%FS: 0.02%+0.1/Vin (s) ;
- b) Current input value is less than 10%FS load current accuracy: ± (0.2%xVin/Rsetting+3mA);
 *3 Range of resistance to read value : (1/(1/R+(1/R)*0.2%+0.001),1/(1/R-(1/R)*0.2%-0.001))
- a) Voltage input value is less than 10%FS: 0.02%+0.05/Vin (s) ;
- Current input value is less than 10%FS load current accuracy:± (0.2%xVin/Rsetting+10mA) ; b)
- *4 Voltage / current input value is not less than 10%FS
- *5 Rise / fall : The rising slope of 10%-90% current for 0 to maximum current
- *6 Minimum rise time: Rise time for 10%-90% current

Standard Fittings

One Power Cord

User Manal

Test Report

USB Communication Cable

IT8912E Rear Panel

Battery Discharge Test Function

IT8912E series electronic load panel can be programmed to realize battery discharge test and programmable settings include turn-off voltage, turn-off capacity and discharge time. During the test, the voltage, time and discharged capacity of the battery can be observed.

OCP/OPP Test

OCP and OPP test functions are particularly suitable for over-circuit and over-power point

Remote Compensation Function

Under CC, CV or CP mode, when the load consumes a large amount of current or the connection conductor is too long, pressure drop will occur on the connection line between the instrument in the north and the load terminal. To ensure measurement precision, there is a remote measurement terminal at the back of the load which can be used by the user to measure the output terminal voltage of the instrument in the north.SENSE(+) and SENSE(-) are remote measurement terminals. Before using the remote measurement function, the user must set the load in remote measurement mode.

tests of products such as lithium battery protection module and power module. Through built-in OCP and OPP functions, the user can set such parameters as the initial current, cutoff current, step current, lasting time of each step current and the voltage drop value for judgement of protection of built-in OCP program for test. This will finally help users to automatically obtain over-current or over-power protection point and to judge if it is within the scope. The user can use it for design validation and production line system to save test time and improve test efficiency.

CR-LED Mode For Pure Hardware Circuit Design

CR or LED mode for main load products on the market generally uses AD sampling voltage and current and the value of R is obtained by software operation through MCU processing unit with slow response speed. Most universal load CR modes are not supported by actual hardware circuit and the constant resistance is obtained by operation through detection of voltage and current.

Theoretically, there is a certain delay characteristic and the CR mode is only suitable for products which feature slow input change and response speed.The IT8912E (500V/15A/ 300W) electronic load newly launched by ITECH adopts pure hardware circuit design and is compatible with LED constant flow source test of varied specifications, providing perfect PWM-LED driver solution.

ITECH ELECTRONICS Your Power Testing Solution

Unique CV+CC Mode

CR or CVmode can only test stable operating points and cannot actually stimulate LED of different characteristics.

For CV+CC operating mode, if it is CV mode at startup, LED driver IC or concatenated current-limiting resistor should be used. When the output current exceeds the rated value and reaches constant current interval, CC mode will be triggered for directly driving LED. This CV+CC can be used for various LED configuration modes, contributing to the flexibility of system design as well as protection for LED driver source.

PWM Dimming Test

LED lights are widely used in different occasions such as street lighting, LED searchlight, stage lighting and tunnel lighting. Illumination regulation is required in many applications according to the actual situations. General electronic load has a response speed so slow that LED driver PWM dimming test cannot be carried out.PWM (Pulse Width Modulation) is the most common digital dimming method and can regulate the illumination by changing the set cycle and duty ratio. When PWM is high, the LED is on, otherwise, the LED is off. The frequency change is so fast that we cannot feel intermittent ons/offs. Therefore, illumination regulation is realized by regulating the duty ratio of PWM.

It can test current ripple and startup surge current of LED constant flow source.

The user can read the MAX current through communication instruction measure:current:max to obtain startup transient surge current. The current ripple can be tested by the reading of Min value.

To sump up, the new LED special electronic load developed by ITECH with innovative design concept and rigorous LED market research analysis can be applied in the research and development, production and quality analysis stages of LED constant flow source manufacturers for completing the analysis of LED constant flow output parameter (voltage, current) and startup characteristic index. For LED driver with dimming characteristics, the user does not need to prepare a digital signal source as 8912E can output PWM pulse wave, thus significantly reducing the cost and simplifying test procedures. 8912E is a product which can truly satisfy various tests in LED field.

Actual Simulation Of LED Light Characteristics

The operating current of LED light is generally tens of milliampere to hundred of milliampere. Over-large startup current will shorten the service life of LED light or even burn it down. Therefore, at the beginning of design of LED constant flow source, there are strict indicators for startup transient surge current. IT8912E electronic load voltage current measurement speed is 50KHz. It can automatically collect and compare the maximum current for a certain period. The user only need to read the maximum current value to the PC through instructions in order to obtain startup transient surge current value and complete the analysis of LED constant flow source design indexes.

High Performance Products

Power Supply

Provide you with the most reliable and accurate power supply.

ITECH providing you with the most reliable and accurate power supply, meet your research and development testing, production testing requirements.

IT6412 Dual-channel Bipolar DC Power Supply NEW

IT6412 unique bipolar voltage/current output can be used as a bipolar power supply or a bipolar electronic load. The battery simulating function is especially applicable for development and high speed production testing of portable, battery-operated products. Ultrafast transient time less than 50 μS and new designed speed shift mode achieves voltage/current high speed rising waveform without overshoot. Meanwhile, IT6412 has the function of waveform display, let the test be visible and simple. P27-P29

IT6500 High Power Wide Range Power Supplies NEW

From 800W to 30 kW, the whole IT6500 series include more than 100 models, the maximum output voltage and current is up to 1000V and 1200A respectively. IT6500C series has multiple functions, e.g. seamless switching across two quadrants, CC & CV priority function, settable output impendence etc. The functions and built-in standard testing curves make IT6500 series to be an ideal solution for battery charging/discharging tests, automotive electronics test, solar panel I-V curve simulation, DC/DC converter test, inverters voltage drop test, product life cycle test, military and aircraft test etc. P30-P35

IT6700 Digital Control Programmable DC Power Supply

IT6700 series power supplies are the most economical power supplies, they have the widest voltage and current utilization, one power supply can replace multiple power supplies, widely used in various testing occasions. **P36**

IT6700H High Voltage Programmable DC Power Supply

IT6700H series are high-voltage and high performance single output power supplies with multiple interfaces to provide flexibility for remote operation.IT6700H is a compact, laboratory grade power supply well suited for application in design field, production or university labs. P37-P39

IT6830A&B Programmable DC Power Supply

The DC power supply, small size, high power output, 0.1mA, 1mV resolution and accuracy, VFD highlight display, optional GPIB/USB/RS232 communication interfaces. P40-P41

IT6300B Triple Output Programmable DC Power Supply

IT6300B provides 1mV, 1mA high resolution and high accuracy. High definition VFD display can display and set the voltage of 3 channels at one time without switching. It greatly simplifies the complex operation of the traditional 3 channel power supply. P42-P43

IT6160B series programmable high-power DC power supply

Integrates ITECH latest design output waveform priority mode, IT6160B can realize the voltage or current waveform fast rising without overshoot. Combined with ultrafast rising speed and high reliability, one set of IT6160B series power supply can meet diversify application requirements. Let your test to be simple and high efficiency. P44

IT6100 High Accuracy Programmable DC Power Supply

IT6100 series(300~1200W) series programmable power supplies,0.1mV,1mA high resolution and high accuracy,ensure your accurate measurements.Built-in 5 1/2 bits digital voltmeter can measure additional signals critically.There's List mode in which can edit and carry out the preset voltage waveform independently. P45

IT7300 Programmable AC Power Supply

IT7300 series is single phase programmable AC power supply. This series power supply outputs kinds of normal and abnormal AC input to mesaure essential parameters of products. Its build-in LAN, USB, RS232 communication interface makes your test efficient. P46-P50

27 IT6412 DC Power Supply

IT6412 Bipolar DC Power Supply

IT6412 unique bipolar voltage/current output can be used as a bipolar power supply or a bipolar electronic load. The battery simulating function is especially applicable for development and high speed production testing of portable,battery-powered products,such as smartphones and wireless chipsets,bluetooth headsets,tablet computers,digital cameras,GPS receivers,RFIC power amplifiers,and intelligent wearable devices,etc.

Features

- Dual Channel, Bipolar, Dual Range output
- Accurate Battery Simulation
- Oscilloscope waveform display (DSO)
- Dual-channel display on high performance colorful LCD screen

- Battery protection board test
- Battery test

- Ultrafast transient response < 50 µS</p>
- Ultrafast Voltage rising time up to 500 µS (full load)
- Current readback resolution up to 100 nA (0.1 µA)
- Built-in high accuracy DVM (5 1/2 digit)
- Variable output impedance (0-1 Ω)
- Applicable to portable battery-operated products test
- LED test no overshoot current
- Relay Out function achieves electrical isolation on terminals
- List function achieves voltage/current output as programmed
- Standard communication interfaces LAN / USB / GPIB

- LED test
- Power amplifier test
- DC / DC converter test

Dual-Channel/Bipolar/Dual-Range Output

As a dual-channel bipolar high speed linear DC source, IT6412 is available for easy-shifting dual range output with each channel. With max. ±15 V voltage and ±5 A current output, IT6412 can achieve testing for mobile phone and charger independently. IT6412 is multifunctional and of high performance, making diversified testing requests available.

Model	Power	Voltage	Current
IT6412	$\pm 15 V / \pm 9 V$	$\pm 3A/\pm 5A$	45 W
	0-15V/0-9V	$\pm 3A/\pm 5A$	45 W

Oscilloscope Waveform Display Function

IT6412 provides waveform display function based on sample data. The voltage/current waveform is visible or invisible by your option, and can be adjusted by the knob. The graphic on the newly designed colorful display can be saved, achieving easy and effective oscilloscope experience.

Battery Simulating Function

With the unique current bipolar design and $0 \sim 1 \Omega$ variable output impedance, IT6412 is applicable to types of portable battery charge-discharge tests. Simulating the battery charge-discharge features and assisting with other tests are also

IT6412 DC Power Supply 28

Ultrafast Transient Response < 50µS

IT6412 is with ultrafast transient response ability, the transient response time for recovering to 50 mV is less than 50uS when 50 %-100 % loaded. New designed speed shift mode achieving voltage/current high speed rising waveform without overshoot, supports stable power supply, and ensures the security, especially for LED test.

DVM Test Function

Abundant electrical basic measuring functions are available on IT6412. High accuracy DVM is built in each channel with readback resolution up to 1 mV and measure range ±20 V. The measured data will be visible on specified channel screen. The changes of voltage waveform measured by DVM can be observed by oscilloscope display function.

reliable. One equipment, diversified applications.

Screenshots Function

IT6412 provides screenshots function to facilitate customer data analysis. Press screenshots on the front panel, the display graphic will be saved in inserted USB storage disk, easy for your reanalysis on data and waveform. The USB interface on front panel makes the data saving in time and easy.

IT6412 Dimension (mm)

29 IT6412 DC Power Supply

IT6412 Specifications

Parameters		CH1	CH2	2	AC Input	Frequency	47Hz-63Hz	
	Voltage	±15 V ± 9 V	0-15 V	0-9 V	Setup Stablity-30min	Voltage	0.01 % + 1 mV	
Output Rating (0°C - 40 °C)	Current	t ± 3 A ± 5 A ± 3 A ± 5 A		(%of output +offset)	Current	0.01 % + 1 mA		
(00-400)	Power	45 W			Setup Stablity-8h	Voltage	0.01 % + 1.5 mV	
Load Regulation	Voltage	≤ 0.01 °	% + 2 mV		(%of output +offset)	Current	0.01 % + 1.5 mA	
±(%of output+offset)	Current	≤ 0.05 °	% + 1 mA		Readback Stablity-30min	Voltage	0.01 % + 1 mV	
Line Regulation	Voltage	≤ 0.02 °	% + 2 mV		(%of output +offset)	Current	0.01 % + 1 mA	
±(%of output+offset)	Current	≤ 0.05 9	% + 1 mA		Readback Stablity-8h	Voltage	0.01 % + 1.5 mV	
	Voltage	1 mV			(%of output +offset)	Current	0.01 % + 1.5 mA	
Setup Resolution	Current	0.1 mA	2		Euco Spor	Voltage1	5 A	
	OVP	10 mV			Fuse Spec	Voltage2	2.5 A	
	Voltage	1 mV			Sense Voltage		1 V	
Readback Resolution	Current	5 A Range	1 mA	4	Programming Response Time(Typical)		5 mS	
	Current	5 mA Range 100 nA		nA	Power Factor		0.7 Max	
Setup Accuracy	Voltage	≤ 0.02 °	% + 2 m∨		Max.Input Current		5 A	
(12-month Validity, 25°C±5°C)	Current	≤ 0.05 % + 2 mA			Max.Input Apparent Power	500 VA		
±(% of output+offset)	OVP	0.5 V			Storage Temperature		-10°C~70°C	
Readback Accuracy	Voltage	≤ 0.02 % + 2 mV			Protection Function		OVP/OCP/OTP	
(12-month Validity, 25°C±5°C)	_	5 A Range ≤ 0.05 % + 2 mA		- 2 mA	Communication Interface		GPIB/USB/LAN	
±(%of output+offset)	Current	5 mA Range ≤ 0.05 % + 2 µA		-2 μA	Withstand Voltage (Output To Ground)		200 Vdc	
Ripple	Voltage	≤ 3 mVµ	p-p / 1 mVi	rms	Working Temperature		0~40°C	
(20Hz -20MHz)	Current	≤ 1 mArms			Dimension (mm)	226 mmW*88.2 mmH*476.26 m		
Setup Temperature	Voltage	0.01 % + 0.2 mV			Weight (net weight)		9 Kg	
Drift Coefficient	Current	0.01 % + 0.2 mA			DVM			
(%of output/°C+offset)	OVP	0.1 % + 50 mV			Measuring Range	-20 V ~ + 20 V		
Readback Temperature	Voltage	0.01 %	+ 0.2 mV		Readback Accuracy		0.02 % + 2 mV	
Drift Coefficient	Current	5 A Range 0).015 % + (0.1 mA	Readback Resolution	1 mV		
(%of output/°C+offset)		5 mA Range 0.01 % + 2 µA		μA	Readback Temperature Drift Coefficient			
Rising Time(No Load)	Voltage	≤ 500 µ	S		(%of intput/°C+offset)		0.02 % + 1 mV	
Rising Time(Full Load)	Voltage	≤ 500 µS			Readback Stablity-30min		$0.02\% \pm 1.m$ V	
Falling Time(No Load)	Voltage	≤ 5 mS			(%of output +offset)	0.02 % + 1 mV		
Falling Time(Full Load)	Voltage	≤ 500 µ	S		Readback Stablity-8h		0.02% + 1.m	
Transient ResponseTime	50% -100)% Load Recove	r To 50mV	≤ 50µS	(%of output +offset)	0.02 % + 1 mV		
AC Input	Voltage1	110 V ±	: 10 %		Input Common-mode Voltage		< 50 Vdc	
AC Input	Voltage2	220 V ±	: 10 %		Input Impedance		4.5 ΜΩ	

IT6500 Auto-range Programmable DC Power Supply

With ITECH latest technology, as a series offull-featuredhigh-performance fast response DC power supplies, IT6500 series provide users witha new level of power supply performance. From 800W to 30 kW, the whole series include more than 100 models, the maximum output voltage and current is up to 1000V and 1200A respectively. At the same time, it also has super wide scope of voltage and current applications. Users canchoose the power supplies according to

Choose the right power supplies according to differenttesting requirements.

IT6502D/12/12A/13/13AGood performance and small size, designed for general testing purpose of R&D or production in fields.

IT6500C series Seamless switching across two quadrants, multi-functional and fast response, designed for continuous source and sink testing needs in power storage applications such as automobile electronics, solar battery, DC motor, batteries etc.

IT6500D series High performance and stable output,

Continuous source & sink testing

T6500 series two-quadrant power supply is not simply a combination of a power supply and electronic load, but it is a

designed for automobile, green energy, high speed testing, high-power testing etc.

Wide-range & High-power

IT6500 series wide-range high-power DC power supplies provide users withwider testing range for options. From 800W to 30 kW, the whole series include more than 100 models, the maximum output voltage and current is up to 1000V and 1200A respectively. At the same time, it also has super wide scope of voltage and current applications. Work with IT-E501 power dissipater unit, the current sinking capacity of IT6500C can rise up to 100% and the power sinking is up to 300%. Working with power dissipater unit, expanding load ability

IT6500C series can be used as both a power supply and an electronic load. It greatly enlarges the current working range of the power supplies and enables it to sink certain current and power, thus it can be widely applied in fast current falling test and batteries charging /discharging test. Each IT-E500 series power dissipater unit provides up to 3kW current sinking capability for IT6500C series power supply. To meet higher power discharging test demand, by multiple power dissipater units' paralleling, IT-E500 series power dissipater unit can extend the current sinking capability up to 300% (Max.90kW). Thus it can meet the requirements of higher power discharging test.

continuous source and load. The 2-quadrant current output ability provides seamless switching across two quadrants. For traditional two-quadrant power supply, there will be a short jump and discontinuity across positive and negative currents. As a high-speed two-quadrant power supply, IT6500C (1800W-30KW) series has a priority function so as to realize high-speed current transition between power supply mode and electronic load mode, to achieve fast seamless switching between sourcing and sinking current, effectively to avoid the overshoot of voltage or current. That enables it to be suitable for battery fast charging and discharging measurements without sacrificing accuracy and can be widely used in energy storage device testing, such as batteries, battery encapsulation and battery protection panel etc.

High-power testchallenges	IT6500 helps you to overcome the challenges	IT6500C	T6500D	T6512 IT6513	IT6502D IT6512A IT6513A
	Output power of single unit is up to 30kW	\checkmark	\checkmark		
High-power	Work with IT-E500 power dissipater unit,	\checkmark			
	can meet discharge test demand up to 90kW				
	800W~30kW, whole series over 100 models.	\checkmark	\checkmark		
	Maximum output voltageis up to 1000V	\checkmark	~		
A/2.1.	Maximum output current is up to 1200A	\checkmark	\checkmark		
Vide-range	Work with IT-E500 power dissipater unit, the current				
	sinking capacity of IT6500C can rise up to 100% and the power sinking is up to 300%.	\checkmark			
Continuous source &	Two-quadrant current output	\checkmark			
ink testing	Seamless switching across two-quadrants	\checkmark			
	Built-in paralleling capability up to 30kW.	\checkmark	\checkmark		
	Support multiple power supplies paralleling in				
Vaintain excellent	Master-Slave mode	\checkmark	\sim	\sim	\checkmark
performance after paralleling	Ensures each power supply equally shares the load	,			
	current and they all remain in the desired mode.	\checkmark	\checkmark		
	Power increasing, performance maintains stable.	\checkmark	\checkmark		
	■ 30kW up/down time < 3mS	\checkmark			
ast response	CC / CV priority automatically selection	\checkmark			
	LIST mode programming	\checkmark	\checkmark	\checkmark	
	Independent settable slew rate in different modes	~		~	\checkmark
Simple programming	Adjustable rising and falling time	V.	\checkmark	•	· ·
on the front panel	Multiple operation modes:		~		
	Power supply: CV/CC/CP modes,	\checkmark	~	\checkmark	\checkmark
	Electronic load: CC/CP modes.	~			
	Variable output impendence function	\checkmark			
Design for special	Built-in DIN 40839 and ISO-16750-2 standard		-		
applications	voltage curve	\checkmark		\checkmark	~
	Solar panel I-V curve simulation function	\checkmark			
	High resolution and high accuracy	\checkmark	\checkmark	\checkmark	\checkmark
Precise measurement	Remote sense function	\checkmark	\checkmark	\checkmark	\checkmark
	Power Supply: OVP,OCP,OPP;	\checkmark	\checkmark	\checkmark	\checkmark
	Electronic Load: OCP,OPP,OTP,	\checkmark			
Fully protection	Anti-reverse protection	Optional	Optional		
	 Turn-off protection, 	\checkmark	\checkmark	\checkmark	\checkmark
	Under voltage protection.	\checkmark	\checkmark	\checkmark	\checkmark
	Analog control interfaces	\checkmark	\checkmark	\checkmark	\checkmark
	Multiple built-in interfaces				
	USB	\checkmark	\checkmark	\checkmark	\checkmark
_	RS232	\checkmark	\checkmark	\checkmark	\checkmark
Cost saving	RS485			\checkmark	\checkmark
	GPIB	\checkmark	\checkmark	\checkmark	\checkmark
	LAN	\checkmark	\checkmark		_
	CAN	\checkmark	\checkmark		

Maintain excellent performance after paralleling

Built-in paralleling and current equally assigned capability IT6500 has built-in paralleling capability up to 30kW.At the same time, IT6500C supports multiple power supplies paralleling together in master-slave mode. Even more it can ensure that each power supply equally shares the load current and they all remain in the desired mode. In the traditional sense, when paralleling power supplies together, different power supplies will operate in different operation modes. For instance, when two sets of power supplies are paralleled together, one will offer a majority of current in CC mode, and the other will offer only a small part of current in CV mode, which will degrade certain power supplies' performance specifications. The currentequally assigned ability of IT6500 ensures each power supply equally shares the load current via the attached cable and no degrading on the performance specifications. The paralleling connection of IT6500 can realize all the functions of a standalone unit. That is a great way to add power flexibility to your test system.What is particularly unusual is that after the expansion of power, IT6500C can still maintain the excellent dynamic characteristics of the single unit to meet the I-V characteristic curve testing demanding a variety of high-power high-speed applications.

Low voltage & high current test

1.596ms

Simple programming on the front panel (List)

Same as conventional ITECH user-friendly design, IT6500 series provides a convenient front panel for programming quickly and precisely without any software.

In list mode,IT6500 seriescan store, recall and run the preset customized program sequences via front panel programming without any software. Edit the voltage/current value & the time of each step in advance and provide the power supply with trigger signal, then the preset sequences/waveform will be executed automatically according to the LIST. That's especially suitable for the applications such as DC/DC converter, inverters voltage drop test, engine start-up simulation, battery charging/discharging tests, product life cycle tests and aircraft test etc.

Waveforms programmed with IT6500 series by engineers

Soft Start Testing

Voltage Step Waveform

1.596ms

ST SM Borandi .

JOCH Smedil (D)

8 sets of IT6522C paralleling together

8 sets of IT6522C paralleling together

8 sets of IT6522C paralleling together

Level B=100ALevel B=800A

Voltage ratings: 10V, Current ratings: 960A

Voltage ratings: 80V, Current ratings: 960A

Load current 800A

Load current: 300A

Load current:

F=10Hz

Standalone set IT6522C, 80V, 120A, 3000W Voltage ratings: 10V, Current ratings: 120A Load current: 100A

High voltage & low current test

Standalone set unit IT6522C, 80V, 120A, 3000W Voltage ratings: 80V, Current ratings: 120A Load current: 30A

Dynamic response test

Standalone set IT6522C, 80V, 120A, 3000W Voltage ratings: 10V, Current ratings: 120A Load current: Level A=10ALevel A=100A F=10 Hz

* Figure: Voltage-Yellow, Current-Green

Voltage ratings: 10V, Current ratings: 960A

D/D Converter Cycle drop Testing

Pulse Charge of Battery

D/D Converter Sag Testing

D/D Converter Surge Testing

Life Cycle Testing

Line Regulation Testing

*Output test with no load

Visit www.itechate.com for more information

Functions for special applications

Built-in DIN40839 & ISO-16750-2 test sequences

The automobile electronics devices often suffer the dropouts or surges from power turn-on or turn-off transient, to ensure the DUT can stand upthesereal-worldtransients, it is necessary to simulate the worst-case power transient conditions. IT6512, IT6513 and IT6500C series power supplies provide built-in DIN40839 and ISO-16750-2 testing curves. Users can select any built-in curve to do the DUT performance test directly according to their demand. 12V and 24V are available for choice.

Programmable output impendence

In battery charging and discharging test, the changes of internal resistance should be taken into account. For enhancingtest precision, IT6500C series power supply provides built-in internal resistance setting function which can simulate battery operation status in real-case.

IT6500 series specifications

Solar panel I-V curve simulation function

I-V curve output of the solar array can be influenced by climate factors such as light, temperature etc.IT6500C series has built-in solar panel I-V curve simulation function, support maximum open-circuit current and maximum short-circuit current. 16 I-V curves in different conditions can be stored and recalled in IT6500 through setting the parameters, e.g. Voc,Isc,Vmp,Imp etc. It can be applied in MPPT(maximum power point tracking) performance tests for solar inverters, micro-inverters, and solar chargers. By PC,IT6500C can simulate more realistic I-V curve. Up to 1024 points can be edited.

800W	IT6502D 80V/60A/800W					
1200W	IT6512/A 80V/60A/1200W	IT6513/A 150V/30A/1200W				
1800W	IT6512C/D 80V/120A/1800W	IT6513C/D 200V/30A/1800W	IT6514C/D 360V/30A/1800W	IT6515C/D 500V/20A/1800W	IT6516C/D 750V/15A/1800W	IT6517C/D 1000V/10A/1800W
3kW	IT6522C/D 80V/120A/3KW	IT6523C/D 200V/60A/3KW	IT6524C/D 360V/30A/3KW	IT6525C/D 500V/20A/3KW	IT6526C/D 750V/15A/3KW	IT6527C/D 1000V/10A/3KW
6kW	IT6532C/D 80V/240A/6KW	IT6533C/D 200V/120A/6KW	IT6534C/D 360V/60A/6KW	IT6535C/D 500V/40A/6KW	IT6536C/D 750V/30A/6KW	IT6537C/D 1000V/20A/6KW
9kW	IT6542C/D 80V/360A/9KW	IT6543C/D 200V/180A/9KW	IT6544C/D 360V/90A/9KW	IT6545C/D 500V/60A/9KW	IT6546C/D 750V/45A/9KW	IT6547C/D 1000V/30A/9KW
12kW	IT6552C/D 80V/480A/12KW	IT6553C/D 200V/240A/12KW	IT6554C/D 360V/120A/12KW	IT6555C/D 500V/80A/12KW	IT6556C/D 750V/60A/12KW	IT6557C/D 1000V/40A/12KW
15kW	IT6562C/D 80V/600A/15KW	IT6563C/D 200V/300A/15KW	IT6564C/D 360V/150A/15KW	IT6565C/D 500V/100A/15KW	IT6566C/D 750V/75A/15KW	IT6567C/D 1000V/50A/15KW
21kW	IT6572C/D 80V/840A/21KW	IT6573C/D 200V/420A/21KW	IT6574C/D 360V/210A/21KW	IT6575C/D 500V/140A/21KW	IT6576C/D 750V/105A/21KW	IT6577C/D 1000V/70A/21KW
24kW	IT6582C/D 80V/960A/24KW	IT6583C/D 200V/480A/24KW	IT6584C/D 360V/240A/24KW	IT6585C/D 500V/160A/24KW	IT6586C/D 750V/120A/24KW	IT6587C/D 1000V/80A/24KW
30kW	IT6592C 80V/1200A/30KW	IT6593C/D 200V/600A/30KW	IT6594C/D 360V300A/30KW	IT6595C/D 500V/200A/30KW	IT6596C/D 750V/150A/30KW	IT6597C/D 1000V/100A/30KW
ITECH ELECTRONICS Your Power Testing Solution

TECH

IT6500 Power Supply 34

Parameters	6	IT6512C	IT6512D	IT6522C	IT6522D	IT6532C	IT6532D
	Voltage	0~80V	0~80V	0~80V	0~80V	0~80V	0~80V
Output Rating	Current	0~120A	0~120A	0~120A	0~120A	0~240A	0~240A
(0°C-40°C)	Power	0~1800W	0~1800W	0~3000W	0~3000W	0~6KW	0~6KW
	Impedance	0~3.6Ω		0~3Ω	-	0~1.5Ω	-
Load Regulation	Voltage			≤0.01%+30	mV		
±(%of Output+Offset)	Current			≤0.05%+30	mA		
Line Regulation	Voltage			≤0.01%+10	mV		
±(%of Output+Offset)	Current			≤0.01%+10	mA		
Setup Resolution	Voltage			10mV			
	Current	10mA					
Read back Resolution	Voltage	ge 10mV					
	Current			10mA			
Setup Accuracy (Within 12 months,25°C±5°C)	Voltage			≤0.05%+30	mV		
±(%of Output+Offset)	Current			≤0.2%+120	mA		
Readback Accuracy (Within 12 months,25°C±5°C)	Voltage			≤0.05%+30	mV		
±(%of Output+Offset)	Current			≤0.2%+120	mA		
Ripple	Voltage			≤80mVp-	р		
(20Hz-20MHz)	Current			≤0.05%+60m	Arms		
Up time (no load)	Voltage	≤5ms	≤30ms	≤5ms	≤30ms	≤5ms	≤30ms
Up time (full load)	Voltage	≤10ms	≤30ms	≤10ms	≤30ms	≤10ms	≤30ms
Down time (no load)	Voltage	≤30ms	≤150ms	≤30ms	≤150ms	≤30ms	≤150ms
Down time (full load)	Voltage	≤10ms	≤150ms	≤10ms	≤150ms	≤10ms	≤150ms
Operation Temperature				0~40°C			

Parameters	5	IT6542C	IT6542D	IT6552C	IT6552D		
	Voltage	0~80V	0~80V	0~80V	0~80V		
Output Rating	Current	0~360A	0~360A	0~480A	0~480A		
(0°C-40°C)	Power	0~9KW	0~9KW	0~12KW	0~12KW		
	Impedance	0~1Ω	-	0~0.75Ω	-		
Load Regulation	Voltage		≤0.01%+3	0mV			
±(%of Output+Offset)	Current		≤0.05%+3	80mA			
Line Regulation	Voltage		≤0.01%+1	0mV			
±(%of Output+Offset)	Current		≤0.01%+1	0mA			
Setup Resolution	Voltage		10mV	'			
	Current		10mA				
Read back Resolution	Voltage	/oltage 10mV					
	Current		10mA	ί.			
Setup Accuracy (Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	0mV			
±(%of Output+Offset)	Current		≤0.2%+12	20mA			
(Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	0mV			
±(%of Output+Offset)	Current		≤0.2%+12	20mA			
Ripple	Voltage		≤80mVp	р-р			
(20Hz-20MHz)	Current		≤0.05%+60r	mArms			
Up time (no load)	Voltage	≤5ms	≤30ms	≤5ms	≤30ms		
Up time (full load)	Voltage	≤10ms	≤30ms	≤10ms	≤30ms		
Down time (no load)	Voltage	≤30ms	≤150ms	≤30ms	≤150ms		
Down time (full load)	Voltage	≤10ms	≤150ms	≤10ms	≤150ms		
Operation Temperature			0~40°C				

Parameters	;	IT6562C	IT6562D	IT6572C	IT6572D	
	Voltage	0~80V	0~80V	0~80V	0~80V	
Output Rating	Current	0~600A	0~600A	0~840A	0~840A	
(0°C-40°C)	Power	0~15KW	0~15KW	0~21KW	0~21KW	
	Impedance	0~0.6Ω		0~0.43Ω	-	
Load Regulation	Voltage		≤0.01%+3	30mV		
±(%of Output+Offset)	Current		≤0.05%+3	30mA		
Line Regulation	Voltage		≤0.01%+1	10mV		
±(%of Output+Offset)	Current		≤0.01%+1	10mA		
Setup Resolution	Voltage		10m\	/		
	Current	10mA				
Read back Resolution	Voltage	Voltage 10mV				
rieda paen riederation	Current		10m <i>A</i>	Ą		
Setup Accuracy (Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	30mV		
±(%of Output+Offset)	Current		≤0.2%+12	20mA		
Readback Accuracy (Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	30mV		
±(%of Output+Offset)	Current		≤0.2%+12	20mA		
Ripple	Voltage		≤80mV	p-p		
(20Hz-20MHz)	Current		≤0.05%+60	mArms		
Up time (no load)	Voltage	≤5ms	≤30ms	≤5ms	≤30ms	
Up time (full load)	Voltage	≤10ms	≤30ms	≤10ms	≤30ms	
Down time (no load)	Voltage	≤30ms ≤150ms ≤30ms ≤15				
Down time (full load)	Voltage	≤10ms	≤150ms	≤10ms	≤150ms	
Operation Temperature			0~40°C			

Parameters	;	IT6582C	IT6582D	IT6592C	IT6592D		
	Voltage	0~80V	0~80V	0~80V	0~80V		
Output Rating	Current	0~960A	0~960A	0~1200A	0~1200A		
(0°C-40°C)	Power	0~24KW	0~24KW	0~30KW	0~30KW		
	Impedance	0~0.375Ω	-	0~0.3Ω	-		
Load Regulation	Voltage		≤0.01%+3	30mV			
±(%of Output+Offset)	Current		≤0.05%+3	30mA			
Line Regulation	Voltage		≤0.01%+1	10mV			
±(%of Output+Offset)	Current		≤0.01%+′	10mA			
Setup Resolution	Voltage		10m\	/			
	Current		10m/	A			
Read back Resolution	Voltage	Voltage 10mV					
	Current		10m/	A .			
Setup Accuracy (Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	30m∨			
±(%of Output+Offset)	Current		≤0.2%+12	20mA			
(Within 12 months,25°C±5°C)	Voltage		≤0.05%+3	30mV			
±(%of Output+Offset)	Current		≤0.2%+12	20mA			
Ripple	Voltage		≤80mV	р-р			
(20Hz-20MHz)	Current		≤0.05%+60	mArms			
Up time (no load)	Voltage	≤5ms	≤30ms	≤5ms	≤30ms		
Up time (full load)	Voltage	≤10ms	≤30ms	≤10ms	≤30ms		
Down time (no load)	Voltage	≤30ms	≤150ms	≤30ms	≤150ms		
Down time (full load)	Voltage	≤10ms	≤150ms	≤10ms	≤150ms		
Operation Temperature			0~40°C				

Features

- Output on/off control
- High accuracy and resolution
- Numeric panel
- List mode
- OVP/OCP/OTP protection
- Standard RS232/USB/GPIB interfaces
- Remote sense

Specification

IT6722 Programmable DC Power Supply

IT6722 Programmable DC Power Supply designed with ITECH latest technology, voltage setup resolution ≤ 0.01%+10mV,current ripple ≤ 15mArms,make the testing to be accurate. Highlight VFD display, multiple functions and switching control output design offer users convenience and comfortable testing experience.

Model	Voltage	Current	Power
IT6722	80 V	20 A	400 W
IT6722A	80 V	20 A	400 W

*IT6722A don't including GPIB interface

		IT6722	IT6722A
Output Rating	Voltage	0~80 V	0~80 V
	Current	0~20 A	0~20 A
	Power	400 W	400 W
Load Regulation	Voltage	≤ 0.03 % + 5 mV	≤ 0.03 % + 5 mV
	Current	≤ 0.1 % + 5 mA	≤ 0.1 % + 5 mA
Line Regulation	Voltage	≤ 0.01 % + 5 mV	≤ 0.01 % + 5 mV
	Current	≤ 0.1 % + 5 mA	≤ 0.1 % + 5 mA
Setup Resolution	Voltage	10 mV	10 mV
	Current	10 mA	10 mA
Read Back Resolution	Voltage	10 mV	10 mV
	Current	10 mA	10 mA
Setup Accuracy	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 10 mV
	Current	≤ 0.1 % + 10 mA	≤ 0.1 % + 10 mA
Read back Accuracy	Voltage	≤ 0.01 % + 20 mV	≤ 0.01 % + 20 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Ripple	Voltage	≤ 50 mVp-p	≤ 50 mVp-p
	Current	≤ 15 mArms	≤ 15 mArms
±(PPM/C+Offset)	Voltage	0.02 % + 10 mV	0.02 % + 10 mV
	Current	0.03 % + 10 mA	0.03 % + 10 mA
Dimension	W*H*D	214.5mm×88.2mm×354.6mm	214.5mm×88.2mm×354.6mm
Weight	Net	2.5 Kg	2.5 Kg
	Interface	RS232/USB/GPIB	RS232/USB

- VFD display
- Convenient data entry via knob or numerical key pad
- High accuracy and high resolution
- Low ripple and low noise
- Intelligent fan control, energy conservation, noise reduction
- Standard communication
- Bulit -in RS232/USB/GPIB interface
- Output voltage and current values accordance with procedure(LIST mode)

IT6700H High Voltage Programmable DC Power Supply

IT6700H series are high-voltage and flexible range single output power supplies.With an easy-to-read VFD display, high accuracy and resolution up to 10mV/10mA. It allows to generate and store programmed sequences directly from the front panel. Standard RS232, USB, GPIB interfaces to provide flexibility for remote operation.IT6700H is a compact, laboratory grade power supply well suited for application in design field, production or university labs.

Model	Voltage	Current	Power
IT6723	80V	40A	850W
IT6723B	150V	20A	850W
IT6723C	32V	110A	850W
IT6723G	600V	5A	850W
IT6723H	300V	10A	850W
IT6724	80V	40A	1500W
IT6724B	150V	20A	1500W
IT6724C	32V	110A	1500W
IT6724G	600V	5A	1500W
IT6724H	300V	10A	1500W
IT6726B	160V	40A	3000W
IT6726G	600V	10A	3000W
IT6726H	300V	20A	3000W
IT6726V	1200V	5A	3000W

- Standard SCPI protocol
- Timer function (0.1s-99999.9s)

List Mode

List mode allows user to create a sequence of steps, store it into the power supply's non volatile memory and execute it. The input parameters for generating a list include the name of the list file, the input steps (no more than 150 steps), the step time (the minimum is 100mS) and the value of each step.

Specifications

		IT6723	IT6723B	IT6723C	IT6723G	IT6723H	IT6724	IT6724B
Output Rating	Voltage	0-80 V	0-150V	0 -32V	0 -600V	0-300V	0-80V	0-150V
	Current	0-40 A	0-20A	0~110A	0~5A	0-10A	0-40A	0-20A
	Power	0-850 W	0-850W	0-850W	0-850W	0-850W	1500W	0-1500W
Load Regulation	Voltage	≤ 0.01 % + 10 mV	≤0.01%+100mV	≤0.01%+10mV	≤0.01%+100mV	≤0.01%+60mV	≤0.01%+10mV	≤0.01%+100mV
	Current	≤ 0.1 % + 20 mA	≤0.1%+20mA	≤0.1%+20mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+20mA	≤0.1%+20mA
ine Regulation	Voltage	≤ 0.01 % + 10 mV	≤0.01%+100mV	≤0.01%+10mV	≤0.01%+100mV	≤0.01%+60mV	≤0.01%+10mV	≤0.01%+100mV
	Current	≤ 0.1 % + 20 mA	≤0.1%+20mA	≤0.1%+20mA	≤0.1%+10mA	≤0.1%+20mA	≤0.1%+20mA	≤0.1%+20mA
Setup Resolution	Voltage	10 mV	100mV	10mV	100mV	100mV	10 mV	100mV
	Current	10 mA	10mA	10mA	10mA	10mA	10mA	10mA
Readback Resolution	Voltage	10 mV	100mV	10mV	100mV	100mV	10 mV	100mV
	Current	10 mA	10mA	10mA	10mA	10mA	10mA	10mA
Programming Accuragy	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 m\
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1% + 20 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Read back Accuracy	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	′ ≤ 0.01 % + 60 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 m\
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1% + 20 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Ripple	Voltage	≤ 80 mVp-p	≤ 120 mVp-p	≤ 80 mVp-p	≤ 150 mVp-p	≤ 150 mVp-p	≤ 70 mVp-p	≤ 120 mVp-p
	Current	≤ 50 mA rms	≤ 30 mArms	≤ 150 mArms	≤ 20 mArms	≤ 30 mArms	≤ 50 mArms	≤ 30 mArms
Temp.coefficient	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV	′ ≤ 0.01 % + 60 mV	≤ 0.01 % + 10 mV	≤ 0.01 % + 100 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1% + 20 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Dimension	W*H*D		214.5 mm × 88.2 mm × 445 mm					
Weight	Net				6 Kg			

Accessories

Standard Accessories

Power Cord

User Manual

Calibration Report

USB Straight Cable

Optional Accessories

IT-E151 Rack Mount Kit

IT6700 Rear Panel

Specifications

		IT6724C	IT6724G	IT6724H	IT6726B	IT6726G	IT6726V	IT6726H
Output Rating	Voltage	0-32 V	0-600 V	0-300 V	0-160 V	0-600 V	0-1200 V	0-300 V
	Current	0-110 A	0-5 A	0-10 A	0-40 A	0-10 A	0-5 A	0-20 A
	Power	1500 W	1500 W	0-1500 W	0-3000 W	0-3000 W	0-3000 W	0-3000 W
Load Regulation	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 100 m\	∕ ≤ 0.01 % + 100 mV	′≤ 0.01 % + 60 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Line Regulation	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 100 m\	∕ ≤ 0.01 % + 100 mV	′≤ 0.01 % + 60 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Setup Resolution	Voltage	10 mV	100 mV	100 mV	100 mV	100 mV	100 mV	100 mV
	Current	10 mA	10 mA	10 mA	10 mA	10 mA	10 mA	10 mA
Readback Resolution	Voltage	10 mV	100 mV	100 mV	100 mV	100 mV	100 mV	100 mV
	Current	10 mA	10 mA	10 mA	10 mA	10 mA	10 mA	10 mA
Programming Accuragy	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 100 mV	∕ ≤ 0.01 % + 100 mV	′ ≤ 0.01 % + 60 m\
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % +20 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 20 mA
Read back Accuracy	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 150 m\	∕ ≤ 0.01 % + 150 mV	′ ≤ 0.01 % + 60 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 10 mA	≤ 0.1 % + 20 mA
Ripple	Voltage	≤ 70 mVp-p	≤ 150 mVp-p	≤ 150 mVp-p	≤ 200 mVp-p	≤ 250 mVp-p	≤ 600 mVp-p	≤ 300 mVp-p
	Current	≤ 150 mArms	≤ 30 mArms	≤ 30 mArms	≤ 50 mArms	≤ 30 mArms	≤ 30m Arms	≤ 30 mArms
Temp.coefficient	Voltage	≤ 0.01 % + 10 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 60 mV	≤ 0.01 % + 100 mV	∕ ≤ 0.01 % + 100 mV	′ ≤ 0.01 % + 60 mV
	Current	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA	≤ 0.1 % + 20 mA
Dimension	W*H*D	2	14.5 mm × 88.2 mr	n × 445 mm	439 mm X 88.2 mm X 462 mm			
Weight	Net		6 Kg			16 K	g	

IT6723/IT6724/IT6723B/IT6724B/IT6723C/IT6724C/ IT6723H/IT6724H/IT6723G/IT6724G dimension:

IT6726B/IT6726V/IT6726H/IT6726G dimension:

Unit: mm

Visit www.itechate.com for more information

IT6830A&B Power Supply 40

IT6830A&B Programmable DC Power Supply

IT6830A & B series are single output programmable DC power supplies. It's with high resolution 1mV/0.1mA,adjustable output time fuction,supporting panel list programming procedures,OVP/OTP protection fuctions,provides your test great convenience.With built-in USB and RS232 interfaces,they can be used both on benchtop and systematical.It offers multi-purpose solutions,based on your design and testing requirements.

Features

- VFD display
- Convenient data entry via knob or numerical key pad
- High accuracy and high resolution
- Low ripple and low noise

List Mode

IT6830A generates a complex current sequence by editing value and time of each step. A list file includes following paremeters: the unit of time,voltage,current, time width of single step, whether to end,cycling steps,whether to save the list. After programming the list,the power supply starts to run the list file once receiving a trigger signal,continue to run untill end of the operation or receiving another trigger.

- Intelligent fan control,energy conservation,noise reduction
- Built-in RS232/USB communication interface
- Output programmed voltage and current
- Remote sense

Model	Voltage	Current	Power
IT6831 A & B	18 V	10 V	180 W
IT6832 A & B	32 V	6 A	192 W
IT6833 A & B	72 V	3 A	216 W

* What differentiates IT6830A and IT6830B is GPIB communication interface only, A series is without GPIB interface.

Remote Sense

Remote sense can be used to compensate for voltage (up to1 V) due to resistance from test leads connected to your device under tes(DUT), thus providing more accurate output voltage. The power supply is initially setup to local sense mode by default. Refer to the following sections for details of local and remote sense set up.

41 IT6830A&B Power Supply

ITECH ELECTRONICS Your Power Testing Solution

Specification

		IT6831A	IT6832A	IT6833A
Output Rating	Voltage	0-18 V	0-32 V	0-72 V
Output Power	Current	0-10 A	0-6 A	0-3 A
	Power	180 W	192 W	216 W
Load Regulation	Voltage	≤ 0.01 % + 6 mV	≤ 0.01 + 5 mV	≤ 0.01 +4 mV
	Current	≤ 0.1 % + 5 mA	≤ 0.01 + 3 mA	≤ 0.01 +2 mA
Line Regulation	Voltage	≤ 0.02 % + 6 mV	≤ 0.01 + 5 mV	≤ 0.01%+4 mV
	Current	≤ 0.1 % + 5 mA	≤ 0.01 + 3 mA	≤ 0.01 %+2 mA
Setup Resolution	Voltage	1 mV	1 mV	1 mV
	Current	0.1 mA (< 10 A) / 1 mA (≥ 10 A)	0.1 mA	0.1 mA
Read Back Resolution	Voltage	1 mV	1 mV	1 mV
	Current	0.1 mA (< 10 A) / 1 mA (≥ 10 A)	0.1 mA	0.1 mA
Setup Accuracy	Voltage	≤ 0.04 % + 8 mV	≤ 0.04 % + 8 mV	≤ 0.04 %+8 mV
	Current	≤ 0.1 % + 12 mA	≤ 0.1 % + 8 mA	≤ 0.1 %+5 mA
Read back Accuracy	Voltage	≤ 0.04 % + 8 mV	≤ 0.04 % + 8 mV	≤ 0.04 %+8 mV
	Current	≤ 0.1 % +12 mA	≤ 0.1 % + 8 mA	≤ 0.1 %+5 mA
Ripple (20Hz-20MHz)	Voltage	≦ 4 mVp-p and 1.5 mVrms	≦ 4 mVp-p and 1 mVrms	≤4 mVp-p and 1 mVrms
	Current	≤ 7 mArms	< 6 mArms	< 5 m Arms
Dynamic recovery time	Recovery 75mv	≤ 100 us	100 us	200 us
Dimension	W*H*D	214.5 mmW*88.2 mmH*354.6 mmD	214.5 mmW*88.2 mmH*354.6 mmD	214.5 mmW*88.2 mmH*354.6 mn

IT6830A Rear Panel Instruction

Standard Accessories

Power Cord

Test Report

User Manual

Optional Accessories

IT-E151 19" Rock Mount Kit

Features

- Triple output voltage, all are adjustable.
- Can set to serial/ parallel/ track mode
- The voltage and current for each channel can be displayed at the same time
- Small size of 1/2 2U
- VFD display
- Function keys with LED light
- Remote measurement function, compensation online pressure drop
- High accuracy, high resolution and high stability

IT6300 Power Supply 42

IT6300B Triple Output DC Power Supply

IT6300B triple output power supply can adjust the stepping by left/right arrow button, very convenient for your operation.

IT6300B has remote measurement function, it can ensure your testing accurately.And built-in RS232, USB,GPIB interface, and each channel can set to serial/ parallel/ track mode, it can bring multipurpose testing solution to you.

Triple isolated voltage and current

Þ	0.001V	Series	0.001V
I	0.000A	CH1+2	0.000A
Ser	rial mode		
•	0.001V	0.001V	Para
	0.000A	0.000A	CH2+3
Par	rallel mode		

- Limited voltage and over heat protection
- Intelligent fan control

IT6322B Rear Panel

- Built-in RS232/USB/GPIB communication interface
- Low ripple and low noise
- Can be monitored by computer software
- Support standard SCPI communication protocol
- Memory capacity of 36 groups, for save and recall
- Can adjust the stepping by left/right arrow button
- Output timer function(0.1~99999.9 seconds)
- Isolated circuit, support plus and minus reverse

♦ 0.0010 0.0030 0.0010 +0.000A 0.000A 0.000A

Track mode, set the parameter of one channel, the parameter of other channels will be changed.

Model	Specifications
IT6322B	30V/3A/90W*2CH
	5V/3A/15W*1CH
IT6332B	30V/6A/180W*2CH
	5V/3A/15W*1CH
IT6333B	60V/3A/180W*2CH
	5V/3A/15W*1CH

Specifications

Parameters		IT6322 B	IT6332B	IT6333B
Output Rating	voltage	0~30 V × 2, 0~5 V × 1	0~30 V × 2, 0~5 V × 1	0~60V×2, 0~5V×1
	current	0~3 A × 2, 0~3 A × 1	0~6 A × 2, 0~3 A × 1	0~3A×2, 0~3A×1
	Voltage limiting protection	0~31 V × 2, 0~6 V × 1	31 V × 2, 6 V × 1	0~61V×2, 0~6V×1
Load Regulation	voltage	≤ 0.0 1% + 3 mV	≤ 0.01 % +3 mV	≤0.01%+3mV
	current	≤ 0.1 % + 3 mA	≤ 0.01 % +3 mA	≤0.01%+3mA
Line Regulation	voltage	≤ 0.0 1% + 3 mV	≤ 0.01 % +3 mV	≤0.01%+3mV
35.0	current	≤ 0.1 % + 3 mA	≤ 0.01 % +3 mA	≤0.01%+3mA
Setup Resolution	voltage	1 mV	1 mV	1mV
	current	1 mA	1 mA	1mA
Readback Resolution	voltage	1 mV	1 mV	1mV
	current	1 mA	1 mA	1mA
Setup Accuracy	voltage	≤ 0.03 % + 10 mV	≤ 0.03 % + 10 mV	≤0.03%+10mV
	current	≤ 0.1 % + 5 mA	≤ 0.1 % + 8 mA (x2), ≤ 0.1 % + 5 mA	A (x1) ≤0.1%+5mA
Readback Accuracy	voltage	≤ 0.03 % + 10 mV	≤ 0.03 % + 10 mV	≤0.03%+10mV
	current	≤ 0.1 % + 5 mA	≤ 0.1 % + 8 mA (x2), ≤ 0.1 % +5 mA	(x1) ≤0.1%+5mA
Ripple and noise	voltage	≤ 1 mVrms / 3 mVp-p	\leq 4 mVp-p (x2) \leq 1 mVrms, \leq 3	mVp-p (x1) ≤ 1 mVrms
	current	≤ 3 mArms	\leq 5 mArms (x2), \leq 4 mArms (x1)	≤4mArms
Temp.coefficient	voltage	≤ 0.03 % + 10 mV	≤ 0.03 % +10 mV	≤0.03%+10mV
	current	≤ 0.1 % + 5 mA	≤ 0.1 % + 5 mA	≤0.1%+5mA
ReadbackTemp.coefficient	voltage	≤ 0.03 % + 10 mV	≤ 0.03 % + 10 mV	≤0.03%+10mV
	current	≤ 0.1 % + 5 mA	≤ 0.1 % + 5 mA	≤0.1%+5mA
Serial synchronous operation	The cascade synchronization error		≤ 0.02 % + 5 mV	≤0.02%+10mV
condi cynonionodo oporadon	The cased of synemonization error	≤ 0.05 % +10 mA	≤ 0.1 % + 30 mA	≤0.1%+30mA
Series parallel setting accuracy	voltage	≤ 0.02 % +5 mV	- 0.1 /0 . 00 /101	-0.170.00007
contro paranoi coming accuracy	current	≤ 0.1 % + 20 mA		
Memory	Save / Recall	36 groups	36 groups	36 groups
Timer	Time setting	0.1S-99999.9S	0.1S-99999.9S	0.1S-99999.9S
	Resolution			
	Function	Timer function for turning off the output	Timer function for turning off the output	Timer function for turning off the output
Dimension	W*H*D	214.5mm * 88.2mm * 354.6mm	214.5mm * 88.2mm * 453.1mm	214.5mm×88.2mm×453.1mm

The Difference Between IT6322B and IT6322

A, IT6322B is using new button layout, Local and left / right arrow buttons added, function keys with LED light, built-in standard RS232, USB and GPIB communication interfaces, which makes the communication much faster.

B, IT6322B supports track mode settings. When single channel parameter changed, the other channel parameters will also change in direct proportion at the same time.

Track Mode

Select track mode, CH1 and CH2, CH2 and CH3, or all three channels to be set as track mode, if any one channel parameter changed, the corresponding parameters of the other channels will also change in direct proportion. For example, set up voltage and current of CH1 and CH2 to be CH1: 4V, 1A; CH2: 8V, 2A. Set CH1 and CH2 in track mode, in output off and Meter state, VFD is shown below:

In this state, if voltage of CH1 set to be 2V, the voltages of CH2 will automatically synchronize to be 4V (proportionally).

IT6160B Power Supply 44

Features

- High visibility vacuum fluorescent display (VFD)
- Linear regulation output, high speed and high reliability.
- High accuracy and high resolution 1mV/1mA
- Ultrafast voltage slew rate (Full load), IT 6162B up to 500µS, IT6164B up to 1mS
- Thermostatically controlled fan

IT6160B High-power DC Power Supply

With ITECH latest design, as a series of programmable high-power DC power supply, IT6160Bseries has multiple functions and excellent output. The main difference between IT6162B and IT6164B is the output range. IT6164B is a dual range high-power linear power supply, IT6162B is not. Integrates ITECH latest design output waveform priority mode, IT6160B can realize the voltage or current waveform fast rising without overshoot. Combined with ultrafast rising speed and high reliability, one set of IT6160B series power supply can meet diversify application requirements. Let your test to be simple and high efficiency.

- Low noise
- Built-in RS232/USB/GPIB interfaces
- Numerical keypad and rotary knob designed for simple programming
- Remote Sense
- Built-in 51/2 voltmeter and milli-ohm meter
- OVP/OCP/OTP

Parameters		IT6162B	IT6	164B
	Voltage	0-20V	0-30V	0-60V
Output Rating	Current	0-50A	0-40A	0-20A
(0℃- 40℃)	Power	1000W	1200	W
Load Regulation	Voltage	≤0.01%+1	0mV	
±(%of Output+Offset)	Current	≤0.1%+1	OmA	
Line Regulation	Voltage	≤0.02%+2	2mV	
±(%of Output+Offset)	Current	≤0.1%+2	mA	
Setup Resolution	Voltage	1mV		
	Current	1mA		
Read back Resolution	Voltage	1mV		
Read back Resolution	Current	1mA		
Setup Accuracy	Voltage	≤0.02%+2mV	≤0.02%+5m	١V
(Within 12 months,25℃±5℃) ±(%of Output+Offset)	Current	≤0.1%+25mA	≤0.1%+20m	A
Readback Accuracy	Voltage	≤0.02%+2mV	≤0.02%+5m	١V
(Within 12 months,25℃±5℃) ±(%of Output+Offset)	Current	≤0.05%+1	5mA	
Ripple	Voltage	≤ 4mVp-p/ 1.2 mVrms	≤ 5mVp-p/ 1	1.2 mVrms
(20Hz-20MHz)	Current	≤15mAr	ms	
	Voltage1	110V±10%		
	Voltage2	120V±10%	220V±	10%
InputRating	Voltage3	220V±10%	22011	.1070
	Voltage4	230V±10%		
	Frequency	22047HZ-63H	ZV±10%	
Operation Temperature		0~40	C	
Dimension		429mmW*88.2mmH*354.6mmD	429mmW*88.2	2mmH*585mmD
Weight (net)		30K	g	

Features

- Linear programmable power supply
- Highlight screen VFD display
- Low ripple and I ow noise
- Built-in 5¹/₂ digital voltmeter
- Support SCPI communication protocol
- Optional GPIB/USB/RS232 interfaces
- High accuracy and high resolution
- List mode operation for increased throughput.
 Download and execute command sequences from non-volatile memory.

IT6100 High Accuracy Programmable DC Power Supply

IT6100 series programmable power supply (300W - 1200W), 0.1mV,1mA high resolution and high accuracy, ensure your accurate measurements. Built-in 51/2 bits digital voltmeter can measure additional signals critically. There's List mode in which can edit and carry out the pre-set voltage waveform independently.

Model	Voltage	Current	Power
IT6151	5.2V	60A	312W
IT6152	20V	27A	540W
IT6153	30V	18A	540W
IT6154	60V	9A	540W

- Standard 19-inch rack mount
- Fast transient response time (<150µs)

List programming voltage waveform

		IT6151	IT6152	IT6153	IT6154
Output Rating	Voltage	5.2 V	20 V	30 V	60 V
	Current	60 A	27 A	18 A	9 A
	Power	312 W	540 W	540 W	540 W
Load Regulation	Voltage	< 0.05 % + 30 mV	< 0.05 % + 20 mV	< 0.05 % + 15 mV	< 0.05 % + 10 m\
2.043	Current	< 0.1 % + 10 mA	< 0.1 %	6 + 5 mA	< 0.1 % + 2 mA
Line Regulation	Voltage	< 0.02 % + 1 mV	< 0.02	% + 1 mV	< 0.02 % + 2 mV
	Current	< 0.1 % + 1 mA	< 0.01	% + 1 mA	< 0.01 % + 0.1 mA
Setup Resolution	Voltage	0.1 mV	0.5	mV	0.5 mV
	Current	1 mA	11	mA	1 mA
Read Back Resolution	Voltage	0.1 mV	0.1	mV	0.5 mV
	Current	1 mA	0.1	mA	0.1 mA
Setup Accuracy	Voltage	< 0.02 % + 2 mV	< 0.02	% + 6 mV	< 0.02 % + 12 mV
	Current	< 0.1 % + 30 mA	< 0.1 %	+ 15 mA	< 0.05 % + 10 mA
Read Back Accuracy	Voltage	< 0.02 % + 1.5 mV	< 0.02	% + 3 mV	< 0.02 % + 6 mV
	Current	< 0.05 % + 15 mA	< 0.05 %	6 + 10 mA	< 0.05 % + 5 mA
Ripple (20-20 MHz)	Vpp	4 mVp-p	4 m	Vp-p	5 mVp-p
	Irms	15 mArms	5 m/	Arms	3 mArms
Temp. Coefficient	Voltage	< 0.02 % + 2 mV	< 0.02	% + 5 mV	< 0.02 % + 10 mV
	Current	< 0.1 % + 30 mA	< 0.1 %	+ 15 mA	< 0.05 % + 5 mA
			0-4	0'0	
Dimension	W*H*D		429 mm * 88.2	mm * 458.9 mm	
Weight	Net		29	Kg	

IT7322

Features

- High accuracy and resolution
- Compact and standard size (300 VA 1/22 U)
- Programmable frequency: 45Hz 500Hz
- Display Vrms, Irms, Ipeak, frequency, PF, apparent power and active power simultaneously
- IEC61000-4-11, IEC 61000-4-14, IEC 61000-4-28 voltage dips and frequency variation simulation

IT7300 Programmable AC Power Supply

IT7300 series sets up the new standard for high performance AC power source. It equips with all powerful features such as power line disturbance (PLD) simulation, Dimmer and comprehensive measurement functions. IT7300 series has built-in LAN/ RS232/USB communication interfaces. IT7300 series can apply to commercial, power electronics and military test applications from bench-top testing to mass production.

IT7300 = "AC power supply" + "Power meter"

- Power line disturbance simulation capability
- Programmable voltage and current limit settings
- Dimmer function
- Turn on, turn off phase angle control (0-360°)
- TTL signal which indicates output transient
- Support front and rear panel output
- List mode to generate surge, sag and other line disturbance simulations
- Over-voltage, over-power, over-current, over-temperat ure protection features
- Built-in LAN, RS-232 / GPIB / USB interface programming with SCPI command language

Model	Specification
IT7322/IT7322H	300V/6A/750VA
IT7324 /IT7324H	300V/12A/1500VA
IT7326/IT7326H	300V/24A/3000VA

Normally, when test AC products, a power meter is needed to connect between AC power supply and DUT in series. Since power meter is built-in in IT7300, user don't need to connect an extra power meter. It is not only easy for test, but also save cost.

Your Power Testing Solution

Linear Amplifier Technology

IT7300 series AC source adopts latest linear technology which greatly reduce the output noise and ensure high working stability. Because of the lower ripple index, this series AC source can assist user to get a more precision measuring result.

Multi-function And High Precision Measurement

IT7300 series AC source uses advanced DSP circuit to get higher precision and high-speed measurement for ture RMS voltage, true RMS current, true power, frequency, power factor and peak value. In addition, its high resolution 0.01W/0.1mA extends the application for Energy Star testing standard. IT7300 series is not only a AC source, but also a powerful meter.

Adjustable Phase Angle

User can set the start and stop phase angle within range of 0~360°. This function is widely used for startup and shutdown current impact test or various rectifier performance test.

Power Line Disturbance Simulation Function

IT7300 series provides powerful functions to simulate all kinds of power line disturbance conditions. The STEP and PULSE modes offer a method to execute a single step or continuous output changes. The LIST Mode, up to 100 sequences, extends this function for more complex waveform generator needs. In this way, IT7300 series is capable of simulating all sorts of voltage dips, surge or trapped wave. The IT7300 series enables users to perform the pre - compliance tests against IEC 61000-4-11 and compliance test against IEC 61000-4-14/-4-28 immunity test regulations .

Built-in Communication Interface

An easy-to use rotary knob and self-guiding keypads allow you to set the output at your desired value without any effort. In addition, IT7300 series AC source has built-in RS232/USB/GPIB/LAN interface, providing customer high speed and stable communication quality. Note: IT7321 do not have GPIB interface.

TRIAC Dimmer Simulation Function

ITECH is the pioneer of TRIAC Dimmer function. This function is used to do dimming and speed regulating test for lamp or electric motor to ensure the products work well when controller of dimming and speed regulating is needed.

Front Phase Dimmer

High Stability

Based on professional high anti-environment disturbance technology, self-diagnosis design and OCP/OPP/OTP protections, this series power supply could work well even in bad environment. IT7300 AC power supply assists engineer to ensure quality for products.

SWEEP Function

This function tests efficiency of switch power supply and gets voltage and frequency value at max power. It could change voltage and frequency by setting start voltage value, end voltage value, stepping voltage value, start frequency, end frequency, stepping frequency and time of each step. Time unit of each step could be S, M, H. And it saves 10 files at most voltage, frequency and current of max power will be displayed when the test is over.

Back Phase Dimmer

ITECH ELECTRONICS Your Power Testing Solution

pecification		Basic Products		High Performance Products	
		IT7321	IT7322	IT7324	IT7326
INPUT		8			
Phase		1	1	1	1
Voltage		220 Vac / 110 Vac ± 10 %	220Vac/110Vac±10%	220 Vac / 110 Vac ± 10 %	220 Vac ± 10 %
Frequency		47 - 63Hz	47-63Hz	47 - 63Hz	47 - 63Hz
Max.Current		6.3 A (220Vac) / 10 A (110 Vac)	15A(220Vac)/30A(110Vac)	30 A (220Vac) / 60 A (110 Vac	c) 60 A
Power Factor		0.5 (typical)	0.7(typical)	0.7 (typical)	0.7 (typical)
AC OUTPUT					
Max.Power		300 VA	750VA	1500 VA	3000 VA
Max Current(rms)	0-150V	3.0 A	6A(0-150V)	12 A (0 - 150 V)	24 A (0 - 150 V)
	0-300V	1.5 A	3A(0-300V)	6 A (0 - 300 V)	12 A (0 - 300 V)
Max Current(peak)	0-150V	12 A	24A (0-150V)	48 A (0 - 150 V)	96 A (0 - 150 V)
	0-300V	6 A	12A(0-300V)	24 A (0 - 300 V)	48 A (0 - 300 V)
Phase		1 Φ / 3 W	1Φ/3W	1 Φ / 3 W	1Φ/3W
Total Harmonic Dist	ortion(THD)		≤ 0.5 % at 45 - 500 Hz (Re		
Crest Factor			≤ 4	,	
Line Regulation			0.1 % max for a ± 10 % lin	e change	
Load Regulation			≤ 0.5 % FS (Resistive Loa		
-			< 100 µS	u)	
Response Time SETTING	_		< 100 μ0		
SETTING	Range		0 - 300 V, 150 / 300 V Au	to	
Voltage	Resolution		0.1 V		
vollage	Accuracy		± (0.2 % + 0.6 V)		
	Range		45 - 500 Hz		
Fraguanay	Resolution			I+ 100 - 500 LI-	
Frequency			0.1 Hz at 45 - 99.9 Hz 1 H 0.1 Hz	HZ at 100 - 500 HZ	
	Accuracy		0-360°		
Dhasa Angla	Range		0.1°		
Phase Angle	Resolution Accuracy				
			± 1° (45 - 65 Hz)		
MEASUREMEN			0.000.1/		
	Range		0 - 300 V		
Voltage(rms)	Resolution		0.1 V		
	Accuracy		± (0.2 % + 0.6 V)		
o	Range	L: 120.0 mA / M: 1.200 A / H: 3 A	L: 120.0mA / M: 1.200 A / H: 6 A	L: 120.0mA / M:1.200 A / H: 12 A	L: 120.0 mA / M: 1200 A / H: 24 A
Current(rms)	Resolution		L: 0.1 mA / M: 1 mA / H: 1		
	Accuracy	L: ± (0.2 % + 0.6 mA) M: ± (0.2 % + 6 mA) H: ± (0 2 % + 40 mA)	L:±(0.2%+0.6mA) M:±(0.2%+6mA) H:±(0.2%+60mA)	L: ± (0.2 % + 0.6 mA) M: ± (0.2 % + 6 mA) H: ± (0 2 % + 80 mA)	L: ± (0.2 % + 0. 6 mA) M: ± (0.2 % + 6 mA) H: ± (0.2 % + 0.1 A)
	Range	0-12A	0-24A	0 - 48 A	0 - 96 A
Current(peak)	Resolution		0.01A	0.01 A	0.01 A
ourrent(peak)	Accuracy	± (1 % + 360 mA)	±(1%+360mA)	± (1 % + 360 mA)	± (1 % + 360 mA)
Device	Resolution			.: 0.01 W M: 0.1 W H: 1 W	L: 0.01 W M: 0.1 W H: 1 V
Power	Accuracy) L:±(0.2%+0.2W) (47HZ-65HZ)L M:±(0.2%+2W) (47HZ-65HZ) M H:±(0.2%+6W) (47HZ-65HZ) H	.:±(0.2%+0.2W) (47Hz-65Hz) //:±(0.2%+2W) (47Hz-65Hz)	L: ± (0.2 % + 0.2W) (47Hz-65H M: ± (0.2 % + 2W) (47Hz-65H H: ± (0.2 % + 15W) (47Hz-65Hz
GENERAL					
Memory			10 memories		
Sync Output Signal			Output Signal 5 V, BNC	type	
Operation Environm	ent		0 - 40°C / 20 - 80 % RH		
Dimension		1⁄219″2U	19″ 3U	19″ 3U	19″ 6U
Interface		LAN/USB/RS232	LAN/USB/RS232/GPIB	LAN/USB/RS232/GPIB	LAN/USB/RS232/GPIE

*There are three levels of current, L-level, M-level and H-level. If Ipeak>300% (Full rms), low level will change to high level; if Ipeak<20% (full rms), M-level will change to L-level; if Ipeak<80% (full rms), H-level will change to M-level.

Unit: mm

Visit www.itechate.com for more information

ITECH ELECTRONICS Your Power Testing Solution	IT7300 Programmable AC Power Supply	50
--	-------------------------------------	----

Specification

		IT7322H	IT7324H	IT7326H			
NPUT							
Phase		1	1	1			
Voltage		220 / 110 Vac ± 10 %	220 / 110 Vac ± 10 %	220 Vac ± 10 %			
Frequency		47 - 63 Hz	47 - 63 Hz	47 - 63 Hz			
Max.Current		15 A (220 Vac) / 30 A (110 Vac)	30 A (220 Vac) / 60 A (110 Vac)	60 A			
Power Factor		0.7 (typical)	0.7 (typical)	0.7 (typical)			
AC OUTPUT	_						
Max.Power		750 VA	1500 VA	3000 VA			
Max Current(rms)	0-250V	3.0 A	6 A	12 A			
	0-500V	1.5 A	3 A	6 A			
Max Current(peak)	0-250V	12 A	24 A	48 A			
	0-500V	6 A	12 A	24 A			
Phase		1 Φ / 3 W	1Φ/3W	1Φ/2W			
Total Harmonic Dist	ortion(T.H.D)		≤ 1 % at 45 - 500 Hz (Resistive Loa	ad)			
Crest Factor			≤ 4				
Line Regulation			0.1 % max for a ± 10 % line change				
Load Regulation			≤ 0.5 % FS (Resistive Load)				
Response Time			< 100 µS				
SETTING							
	Range		0 - 500 V, 250 / 500 V Auto				
Voltage	Resolution		0.1 V				
	Accuracy	±(0.2%+1.2V)	± (0.2 % + 0.6 V)	± (0.2 % + 0.6 V)			
	Range		45-500Hz				
Frequency	Resolution	0	.1 Hz at 45 - 99.9 Hz 1 Hz at 100 - 500 H	Ηz			
	Accuracy		0.1 Hz				
	Range		0 - 360°				
Phase Angle	Resolution		0.1°				
Ŭ	Accuracy		± 1° (45 - 65 Hz)				
MEASUREMEN ⁻	Γ						
	Range	0 - 500 V	0 - 500 V	0 - 500 V			
Voltage(rms)	Resolution	0.1 V	0.1 V	0.1 V			
	Accuracy	± (0.2 % + 1.2 V)	± (0.2 % + 0.6 V)	± (0.2 % + 0.6 V)			
	Range	L: 120.0 mA / M: 1.200 A / H: 3.00 A	L: 120.0 mA / M: 1.200 A / H: 6.00 A	L: 240.0 mA / M: 2.400 A / H: 24.0			
Current(rms)	Resolution	L: 0.1 mA M: 1 mA H: 10 mA	L: 0.1 mA / M: 1 mA / H: 10 mA	L: 0.1 mA / M: 1 mA / H: 10 mA			
	Accuracy	L: ± (0.2 % + 0.6 mA)	L: ± (0.2 % + 0.4 mA)	L: ± (0.2 % + 0.6 mA)			
	5-5-5-600 (10-500) - 1-	$M: \pm (0.2 \% + 6 mA)$	M: $\pm (0.2 \% + 6 \text{ mA})$	$M: \pm (0.2 \% + 6 mA)$			
		H: ± (0.2 % + 40 mÁ)	H: ± (0.2 % + 60 mA)	H: ± (0.2 % + 40 mÁ)			
	Range	0 - 12 A	0 - 24 A	0 - 48 A			
Current(peak)	Resolution	0.01 A	0.01 A	0.01 A			
	Accuracy	± (1 % + 360 mA)	± (1 % + 360 mA)	± (1 % + 120 mA)			
Power	Resolution	L:0.01W M:0.1W H:1W	L:0.01W M:0.1W H:1W	L:0.01W M:0.1W H:1W			
	Accuracy	L: ± (0.2 % + 0.2 W) (47 Hz - 65 Hz) M: ± (0.2 % + 2 W) (47 Hz - 65 Hz) H: ± (0.2 % + 6 W) (47 Hz - 65 Hz)	L: ± (0.2 % + 0.2 W) (47 Hz - 65 Hz) M: ± (0.2 % + 2 W) (47 Hz - 65 Hz) H: ± (0.2 % + 10 W) (47 Hz - 65 Hz)	L: ± (0.2 % + 0.05 W) (47 Hz - 65 Hz M: ± (0.2 % + 0.5 W) (47 Hz - 65 Hz H: ± (0 2 % + 2 W) (47 Hz - 65 Hz)			
GENERAL							
Memory			10 memories				
Sync Output Signal			Output Signal 5 V, BNC type				
Operation Environm	ent		0 - 40℃ / 20 - 80 % RH				
Dimension		19″ 3U	19" 3U	19″ 6U			
		LAN/USB/RS232/GPIB	LAN/USB/RS232/GPIB	LAN/USB/RS232/GPIB			

*There are three levels of current, L-level, M-level and H-level. If Ipeak > 300% (Full rms), low level will change to high level peak < 20% (full rms), M-level will change to L-level; if Ipeak < 80% (full rms), H-level will change to M-level.

Standard Accessories

Power Cord

Calibration Report

User Manual

IT9121 Power Analyzer

IT9121 Power Analyzer

The IT9121 power analyzer can provide the maximum input of 600Vrms and 20Arms and measurement bandwidth of 100kHZ, and can be easily used for measuring the voltage, current, power, frequency, harmonics and other parameters. The standard configuration includes USB, GPIB, RS232 and LAN communication interfaces and also interfaces for USB-based peripheral devices. The user can save the measured parameters into the external storage medium. The basic voltage and current accuracy is 0.1%. Moreover, the power meter has rich integrating functions, such as the active power. It is widely applied in test of motors, household appliances, UPS, etc.

Features

- 4.3-inch color LCD (TFT)
- The row number of matrix displayed on the screen can be set freely and common measurement parameters can be displayed.
- Input range: 600Vrms / 20Arms
- The voltage, current, power, harmonics and other parameters can be measured at the same time.

Rich Measurement Functions

The IT9121 power analyzer can measure all AC and DC parameters, including the active power, reactive power, apparent power, power factor, voltage, current, frequency, phase difference, etc. It also has the function of integral measurement and up to 50th harmonic measurement, and can display single harmonic components. It is widely applied in tests of motors, household PCB, UPS, etc.

- The accuracy of voltage and current measurement is up to 0.1%.
- The power analyzer has a function of harmonic measurement, and can be used for measuring up to 50th harmonics.
- The interfaces for USB-based peripheral devices are provided, and the user can save data into the external storage medium.
- The power analyzer has rich and powerful integrating functions, and can be used for measuring electric energy which is bought or sold.
- The power analyzer also has a function of frequency measurement.
- Standard built-in USB, GPIB, RS232 and Ethemet communication interfaces.

Communication Interface

The standard configuration of the IT9121 power analyzer includes, the USB, GPIB, RS232 and Ethernet communication interfaces. Remote control of the power analyzer can be realized via these interfaces. In addition, IT9121 is also equipped with a USB-Host interface for connection of U discs and other devices, and the user can save screenshots into the U disc.

Current Transducer Input

The IT9121 power analyzer can be used for measuring the voltage of 0-600V and current of 0-20A. For measurement of the current above 20A, the voltage input type current clamp or current transducer can be applied. When IT9121 is used, the user can select the range of 50m V-2V (EX1) or 2.5V-10V (EXT2).

Integral Measurement Function

Due to the power integral function, the sold/bought electric energy in the interconnected power grids can be measured. The IT9121 power analyzer can provide the current integral and active power integral (Wh). Automatic range switching and accurate integral measurement can be carried out in the Buy and Sell mode, according to the input level.

TFT High-resolution LCD

Harmonic Measurement

The IT9121 power analyzer has a bandwidth of 100KHz, which can realize high-speed harmonic measurement within a wider dynamic range. In the harmonic mode, the voltage, the current, the active power, reactive power and phase of each harmonic and the factor of total harmonic distortion (THD) can be tested. In addition, IT9121 can be used for measurement of multiple harmonics, 50 harmonics of the fundamental frequency can be measured at most.

The parameters of each harmonic measured by the IT9121 power analyzer can be displayed in the bar chart and the list, so as to facilitate analysis of measurement results.

*IT9121E do not have harmonic measurement function.

for the user, and real-time values can be displayed with high brightness and remarkable colors even in a dark test environment,

In addition, the IT9121 power meter provides multiple interface display styles (View1,View4 and View12). The user can customize the screen display parameter type and display sequence, and roll over the screen display via the keys "Left" and "Right". The humane design meets engineers' measurement demands in different tests.

	000	P			8:29 Ims A PF	15.0 A_A 50.00	UTO XXXV UTO XXmV	U			0.0	000		l8:29 Jrms V	V_AUTO 15.000V A_AUTO 50.000m
Q N Upp	0.000 m 0.000 0.019	H# V	s •	0.000 0.000 0.0380	EVA H2 A	HO	E SET		lema PF S	0.0058	mA mVA	р 0 2	0.000	N N N N	HOLD RESET
VIEW 1	VIEV	v	VIEW 12	OFF	ON	1200	4FIG		VIEW	18:29	4 V_AUT	12	SIL		CONFIG
	1 464	4		Ums		0.000		lens	0.0272	mA	15.000 A_AU	vo			
				P. 5		0.000	wime Wime	PF Q	0.000	-	50.000 RUN	Vm			
				Upp NJ		0.019	V Hz	1	0.0315	mA Hz	HOLE	D			
				RAD	EW	0.0 V	Dep	VIEW		HOLD	CONFI				
					1		5	12	OFF						

Application Advantages

Power quality analysis of UPS

As an important backup power supply in the communication industry, the steady-state properties, dynamic properties, power quality and other parameters of UPS should be analyzed. Due to internal nonlinear devices, a large number harmonic components will be produced during operation of the UPS power supply, which may cause interference to operation of the communication system. The IT9121 power analyzer can measure the AC/DC signal, power factor, harmonics, frequency, distortion factor and other, and the power properties of UPS can be analyzed systematically and comprehensively.

Performance test of household electrical appliances

Along with the large-scale promotion of the concept of reasonable and environment-friendly energy, more and more household electrical appliances adopt the variable frequency control technology to reduce the power consumption. The IT9121 power analyzer can measure the inrush current, active power, crest factor and other parameters.

General Specification

Screen Display

Model	IT9121						
AC input voltage	100 VAC - 240 VAC 50 / 60 Hz						
Warm-up time	Apporx 30 minutes						
Operating	Temperature : 5°C - 40°C						
environment	Humidity: 20 % RH - 80 % RH (No condensation)						
	Altitude : 2000 m or less 2000 m						
Storage	Temperature : - 20°C - 50°C						
environment	Humidity : 20 % RH - 80 % RH (No condensation)						
	Altitude : 2000 m or less 2000 m						
Installation	Indoors						
Safety	IEC 61010-1, EN 61010-1, Measurement CATII						
Maximum power consumption	50 VA						

Instantaneous maximum	 Current: Direct input range 5 mA ~ 200 mA: peak value of 30 Aor RMS value of 20 A, whichever is les 	
allowable input(1s)		
	 Direct input range 0.5 A ~ 20 A: peak value of 150A or RMS value of 40 A, whichever is less 	
	Sensor input :	
	 Peak value less than or equal to 10 times of the rated range 	
Input bandwidth	DC, 0.5 Hz ~ 1 MHz	
Continuous maximum Common-mode voltage	600 Vrms, CAT II	
Line filter	select OFF, cut off frequency of 500 Hz	
Frequency filter	select OFF, cut off frequency of 500 Hz	
Range	range of each unit can be set separately	
A/D converter	Simultaneous conversion voltage an current inputs	
	Resolution: 18-bit	
	Maximum conversion rate: 10 µs	

Voltage And Current Accuracy Item Specifications Requirements temperature 2

Display type	Dimension: 4.3-inch color LCD (TFT) Full screen pixel: 480 (horizontal) *272 (vertical)
	points Waveform display pixel : 384 (horizontal) *194 (vertical) points
	Operating temperature: -20 °C ~ 70 °C Storage temperature: -30 °C ~ 80 °C
	Value display : matrix display

Detailed Information

Input		Accuracy	DC: ± (0.1% of
ltem	Specifications		0.5 Hz ≤ f < 4
Input terminal type	voltage; plug-in terminal (safety terminal)		45 Hz ≤ f ≤ 6 66 Hz < f ≤ 1
			$1 \text{ kHz} < f \le 10$
Input type	Current Direct input: large binding post External current sensor input DB9 connector		± (0.07*f) % of r
	External current sensor input bbs connector		10 kHz < f ≤ 1
Input type	Voltage:Floating input through resistive voltage divider		± (0.5 % of read
	Current:Floating input through shunt		of reading]
Measure range	Voltage:15V, 30V, 60V, 150V, 300V, 600V current:	Active Power Acc	uracy
	Direct input : 5mA, 10mA, 20mA, 50mA, 100mA,	Item	Specifications
	200mA, 0.5A, 1A, 2A, 5A, 10A, 20A	Requirements	same as the cond
	Sensor input : EX1: 50mV, 100mV, 200mV,	Accuracy	DC: (0.1 % of re
	500mV, 1V, 2V; EX2: 2.5V, 5V, 10 V。		0.5 Hz ≤ f < 45
Input impedance	Voltage: Input resistance: Approx. 2MΩ, input capacitace:		$45 \text{ Hz} \le f \le 66$
, , ,	Approx.13pF (in parallel with the resistance)		66 Hz < f ≤ 1k
	current:		1 kHz < f ≤ 10 k
	Direct input range 5 mA ~ 200 mA:		± (0.1 % of read
	Input resistance: Appro x 505 mΩ Input inductance: Appro x 0.1 μH		10 kHz < f ≤ 100
			± (0.5 % of read
	 Direct input range 0.5A ~ 20 A: Input resistance: Appro x 5 mΩ 	Influence of power factor	when power fac
	 Input inductance: Appro x 0.1 μH Sensor input: Input resistance: Appro x 100 kΩ (2.5 V ~ 10 V) Input resistance: Appro x 20 kΩ (50 mV ~ 2 V) 		 ± 0.2 % of S f
			• ± {(0.2 + 0.2 >
			f is frequency of
			when $0 < \lambda < 1$ (
			(power reading):
Continuous maximum	Voltage: peak value of 1.5 kV or RMS value of 1 kV,		(power range/ind (influence when
allowable input	whichever is less current:		
	 Direct input range 5 mA ~ 200 mA: 	When the line filter is	45 ~ 66 Hz: Add
	peak value of 30 A or RMS value of 20 A, whichever is less	turned ON	< 45 Hz: Add 1 9
	 Direct input range 0.5 A ~ 20 A: peak value of 100 A or RMS value of 30 A, whichever is less 	Temperature coefficient	same as the ten
	 Sensor input : Peak value less than or equal to 5 times of the rated range 	Accuracy when the crest factor is set to 6	accuracy obtain error for the acc
Instantaneous maximur allowable input (1s)	^m Voltage: peak value of 2 kV or RMS value of 1.5 kV, whichever is less	Accuracy of apparent power S	voltage accurac
anonanio inpar(13)		Accuracy of reactive	accuracy of app

ltem	Specifications
Requirements	temperature : 23 ± 5° C, humidity : 30 ~ 75 % RH. Input waveform:
	Sine wave crest factor: 3, common-mode voltage: 0 V
	Number of displayed digits: 5 digits (6 digits when including the decimal point)
	Frequency filter : Turn on to measure voltage or current
	of 200 Hz or 30 minutes after warm-up time has passed
	After zero-level compensation or measurement range is changed
Accuracy	DC: ± (0.1% of reading + 0.2% of range)
	0.5 Hz ≤ f < 45 Hz: ± (0.1 % of reading + 0.2 % of range)
	45 Hz ≤ f ≤ 66 Hz:± (0.1 % of reading + 0.2 % of range)
	66 Hz < f \leq 1k Hz: ± (0.1 % of reading + 0.2 % of range)

 $1 \text{ kHz} < f \le 10 \text{ kHz}; (0.1 \% \text{ of reading} + 0.2 \% \text{ of range}) \\ \pm (0.07^*\text{f}) \% \text{ of reading} + 0.3 \% \text{ of range}) \\ 10 \text{ kHz} < f \le 100 \text{ kHz}; \\ \pm (0.5 \% \text{ of reading} + 0.5 \% \text{ of range}) \pm [\{0.04 \times (f-10)\} \% \text{ of reading}] \\ \end{cases}$

Requirements	same as the conditions for voltage and current. Power factor:1	
Accuracy	DC: (0.1 % of reading + 0.2 % of range)	
	0.5 Hz ≤ f < 45 Hz : ± (0.3 % of reading + 0.2 % of range)	
	45 Hz ≤ f ≤ 66Hz : ± (0.1 % of reading + 0.1 % of range)	
	66 Hz < f \leq 1kHz : ± (0.2 % of reading + 0.2 % of range) 1 kHz < f \leq 10 kHz:	
	± (0.1 % of reading + 0.3 % of range) ± [{0.067×(f-1)} % of reading	
	10 kHz < f ≤ 100 kHz:	
	± (0.5 % of reading + 0.5 % of range) ± [{0.09×(f-10)} % of reading	
Influence of power factor	when power factor (λ)=0 (S:apparent power)	
	 ± 0.2 % of S for 45 Hz ≤ f ≤ 66 Hz 	
	 ± {(0.2 + 0.2 × f) % of S } for up to 100 kHz as reference data 	
	f is frequency of input signal in kHz	
	when $0 < \lambda < 1$ (Φ : phase angle of the Voltage and current) (power reading)×[(power reading error%)+(power range %)× (power range/indicated apparent power value)+{tan Φ × (influence when λ =o)%}]	
When the line filter is turned ON	45 ~ 66 Hz: Add 0.3 % of reading < 45 Hz: Add 1 % of reading	
Temperature coefficient	same as the temperature coefficient for voltage and current	
	· · · · · · · · · · · · · · · · · · ·	
Accuracy when the crest factor is set to 6	accuracy obtained by doubling the measurement range error for the accuracy when the crest factor is set to 3	
Accuracy of apparent power S	voltage accuracy +current accuracy	
Accuracy of reactive power Q	accuracy of apparent power + ($\sqrt{1.0004} - \lambda 2$) - ($\sqrt{1} - \lambda 2$) × 100 %	

Accuracy of power factor λ	$\pm [(\lambda - \lambda/1.0002) + \cos \emptyset - \cos {\emptyset + \sin -1} (influence)$ from the power factor when $\lambda = 0\%/100$) ± 1 digit when voltage and current are at the measurement range rated input
Accuracy of phase difference Φ	\pm [Ø-cos-1 (λ/1.0002) + sin-1 (influence from the power factor when λ = 0 %/100) \pm 1digit when voltage and current are at the measurement range rated input

Voltage, Current And Power Measurements

Item	Specifications	
Measurement method	Digital sampling method	
Crest factor	3 or 6	
Wiring system	(one element model): single-phase , two-wire (1 P2 W)	
Range select	select manual or auto ranging	
Auto range	Range increase	
	Range decline	

	Name	Symbols And Meanings
	Voltage current	Select RMS(the effective RMS value of voltage andcurrent) < MEAN:(the rectified mean value calibrated to theRMS value of the voltage andthe true RMS value of the current) < RMN (rectified mean value of voltage and current DC:(simple average of voltage and current), AC: alternating current, PP: (peak value of voltage and peak value of current)
	Active power [W]	Р
Measurement	Reactive power [var]	Q
parameters	Apparent power [VA]	S
	Power factor	λ
	Phase difference (°)	φ
	Frequency (Hz)	fU (FreqU) : voltage frequency fl (FreqI): current frequency
	Max/mix of voltage (V)	Upk+: voltage positive peak Upk-: voltage negative peak
	Max/mix of current (A)	Ipk+: current positive peak Ipk- : current negative peak
	Crest factor	cru: crest factor of voltage cru: crest factor of current
	Integration	TM:integration time, WP; sum of positive and negative watt hour, WP+; positive power sum, WP-; negative power sum, q: sum of positive and negative ampere-hour, q+: positive ampere -hour sum, q-: negative ampere-hour sum
Measurement synchronization source	Select voltage, current, or the entire period of the data updata interval for the signal used to achieve synchronization during measurement.	
Line filter	Select OFF or ON (cutoff frequency at 500 Hz)	
Peak measurement	Measures the peak (max, min) value of voltage, current or power from the instantaneous current or instantaneous power that is sampled.	

Harmonic Measurement

Measured item	All installed elements
Method	PLL synchronization method
Frequency range	Fundamental frequency of the PIL source is in the range of 10Hz to 1.2kHz
PLL source	Select voltage of current of each input element
FFT data length	1024

	Name	Symbols And Me	anings
	Voltage (V)	U(k): Kth harmonic	U(Total): voltage effective
	Current (A)	I(k): Kth harmonic	I(Total): curent effective
	Active power (W)	P(k): active power of Kth harmonic	P(Total): Active power
	Apparent power (VA)	S(k); apparent power of Kth harmonic	S(Total); total apparent power
	Reactive power(var)	Q(k); reactive power of Kth harmonic	Q(Total): total reactive power
з	Power factor	λ(k): power factor of Kth harmonic	λ(Total); Total power factor
measurement parameter	Phase difference	$\varphi(k)$: phase difference between voltage and current of Kth harmonic $\varphi U(k)$: voltage phase difference between Kth harmonic(UK) and fundamental wave(U1) $\varphi I(k)$: current phase difference between Kth harmonic(IK) and fundamental wave(I1)	φ: total phase difference
neter	Harmonic distortion factor (%) Uhdf(k): Voltage ratio of Kth harmonic(Uk) and fundm or total distortion wave(Utotal) Ihdf(k): current ratio of Kth harmonic (Ik) and fundm or Total distortion wave(Itotal) Phdf(k): active power ratio of Kth harmonic(Pk)and fur (P1)or total distortion wave(Ptotal)) (Ik) and fundmental wave(I1) onic(Pk)and fundmental wave
harmonic distortion	Uthd: voltage ratio of total harmonic and fundmental wave(U1) or total distortion wave(Utotal). Ithd: current ratio of total harmonic and fundmental wave(I1) or total distortion wave(Itotal). Pthd: active power ratio of total harmonic and fundmental wave(P1) or total distortion wave(Ptotal)		
Window function	Rectangle		

Note: K is a integer from 0 to upper limit of harmonic analyse times. 0th means DC parameteUser can configure the maximum number of harmonic times manually or auto-decided by equipment, taking the minmum value between the two methods. IT9121 can measure up to 50th harmonic.

Frequency Measurement

Item	Specifications	
Measurement item	Voltage or current frequencies applied to one selected input element can be measured	
	Vaties depending on the data update interval (see description given later)as follows	
Frequency filter	Data update interval	Measurement range
	0.1 s	25 Hz ≤ f ≤ 100 kHz
	0.25 s	10 Hz ≤ f ≤ 100 kHz
	0.5 s	5 Hz ≤ f ≤ 100 kHz
	1 s	2.5 Hz ≤ f ≤ 100 kHz
	2 s	1.5 Hz ≤ f ≤ 50 kHz
	5 s	$0.5 \text{ Hz} \le f \le 20 \text{ kHz}$
Frequency filter	Select OFF or ON (cutoff frequency of 500 Hz)	
Accuracy	Requirements : When the input signal level is 30 % or more of the measurement range and the crest factor is set to 3 (60 % or more if the crest factor is set to 6), Frequency filter is ON when measuring voltage or current of 200Hz or less. Accuracy: ± (0.06 % of reading)	

Fundamental Frequency

Fundamental frequency	Sample rate	Window width	Upper limit of* analysis orders
10 Hz ~75 Hz	f * 1024	1	50
75 Hz ~150 Hz	f * 512	2	32
150 Hz ~ 300 Hz	f * 256	4	16
300 Hz ~ 600 Hz	f * 128	8	8
600 Hz ~1200 Hz	f * 64	16	4

*the upper limit of analysis orders can be decreased

Accuracy

*When line filter is off, the accuracy shown below is the sum of reading and range errors

Frequency	Voltage	Current	Power
10 Hz ≤ f < 45 Hz	0.15% of reading	0.15% of reading	0.15%of reading
	+0.35% of range	+0.35% of range	+0.50%of.range
45 Hz ≤ f ≤ 440 Hz	0.15% of reading	0.15% of reading	0.20% of reading
	+0.35% of range	+0.35% of range	+0.50% of range
440 Hz < f ≤ 1 kHz	0.20% of reading	0.20% of reading	0.40% of reading
	+0.35% of range	+0.35% of range	+0.50% of range
1 kHz < f ≤ 2.5 kHz	0.80% of reading	0.80% of reading	1.56%of reading
	+0.45% of range	+0.45% of range	+0.60%of range
2.5 kHz <f khz<="" td="" ≤5=""><td>3.05% of reading</td><td>3.05% of reading</td><td>5.77% of reading</td></f>	3.05% of reading	3.05% of reading	5.77% of reading
	+0.45% of range	+0.45% of range	+0.60% of range

Interfaces

- USB Interface
 Ethernet Interface
- GPIB Interface
- RS232 Interface

Standard	Accessories
Otanuaru	10003301103

Power Co	ord
CD	
USB Cabl	е

Optional Accessories
IT-E185
IT-E301/30A/10A

IT-E190/25A/40A/60A

55 Test Systems

Test Systems

Providing you with high efficiency and stabliliy test systems.

The unique modular design of ITECH test systems is available for flexible combination to provide you the most reasonable resolutions. If the DUT (Device Under Test) changes, it is easy to expand the specs of test systems with cost-saving on production and testing, achieving your

ITS5300 Battery Charge & Discharge Test System

Modular design of ITS5300 battery charging and discharging test system makes it available for flexible combination to provide you the most reasonable resolutions. You can program testing steps through the software to do the testing of multi-channel single battery/battery pack simultaneously. The tests cover CC charging, CV charging, CC/CP/CR discharging etc. It is highly automatic with high stability. Best choice for your test. P56-P62

ITS9500 Power Supply Test System

ITS9500 power supply test system, designed for switching power supply test, is a convenient, practical and cost-efficient testing system. The test system adopts new design to break in unfavorable characteristics of traditional test systems, such as huge size, expensive, complex operation and complicated calibration etc. The standard 5U unit provides satisfied testing results superior to traditional huge test systems. This test systems is widely applied to tests for power supply unit, LED drive power and battery charger etc. P63-P70

diversified R&D and production testing requirements.

IT9380 Solar Battery Test System

IT9380 Solar battery test system is ITECH designed and composed by ITECH products and solar cell test software. The system can automatically finish kinds of data tests, and support long time automatic test based on practical testing requirements. P71-P72

ITS5300 Battery Charge & Discharge Test System 56

ITS5300 Battery Charge & Discharge Test System

ITS5300 Battery Charge & Discharge Test System ("ITS5300 Test System") is designed for testing the performances of power batteries of all kinds (lead, NI-MH and lithium batteries, supercapacitor, hydrogen cell, etc.), which can simulate electromobiles' requirements on battery pack under a series of equivalent operating conditions.

ITS5300

Features

- A pulse charge/discharge function is designed for IR and capacity testing of battery module/cell.
 - Charge mode: CC/CV/pulse charge
 - Discharge mode: CC/CR/CP/pulse discharge
 - Voltage range: 0 1200 V
 - Current range: 0 1500 A
 - Power range: 0 600 KW
- High reliability and precision guarantee absolute
- measurement accuracy within the broad voltage/current range, improving the system utilization.

Applications

- Battery charge/discharge performance testing
- Battery cycle life testing
- Battery capacity testing
- outgoing product/incoming material inspection
- Production test

ACIR Testing

- Voltage: 0.025 % + 0.025 % F.S
- Current: 0.05 % + 0.05 % F.S
- High sensibility and sample rate make it applicable for charge/discharge test on power batteries of all kinds.
- V/I current sample rate: 50 kHz (one point sampled every 20 µS).
- Online/offline ACIR and DCIR testing features are designed for analyzing battery/cell IR.
- Standard modular design not only makes it easy for hardware extension and follow-up maintenance but also expand its applications.
- Available for temperature monitor
- A complete alarm and protection setup for effectively preventing overcharge, over-discharge and other unexpected faults.
- Multi-channel independent control
- Available for charge/discharge testing on more than a hundred channels at a time.

A battery pack is typically a set of any number of cells configured in series. A sharp difference between cells may greatly impair the battery pack's discharge performance. Therefore, measurement and systematic analysis of cell IR is also an integral part of battery performance test. IR is not a constant and may change over time during charge/discharge. The online ACIR testing feature is designed for rapidly and accurately identifying the dynamic IR variation in each cell so as to determine whether the battery has failed.

57 ITS5300 Battery Charge & Discharge Test System

ITECH ELECTRONICS Your Power Testing Solution

DCIR Testing

DCIR is typically used in testing high-capacity batteries or accumulators since low-capacity batteries are incapable of loading 40A-80A current within 2-3s. DC discharge is a measurement similar with battery mechanics. In DCIR testing, the DCR is calculated from the current and voltage differences between two different currents.

Battery Temperature Measurement

For battery packs of different structures, temperature

Battery Cycle Life Testing

With the increase in charge/discharge cycles, IR will increase due to internal oxidation, preventing the battery from discharging stored power and in turn end the battery life. Battery cycle life (one charge + one discharge constitute one cycle) is influenced by discharge rate, temperature, end-of-charge/discharge voltage and other factors (see the right figure). Lithium battery typically has 300-500 charge & discharge cycles. IEC and other regulations stipulate that for a standard lithium battery, the remaining capacity after 500 charge & discharge cycles must be 60% or more of the initial capacity. Therefore, charge & discharge cycle testing is an important means to evaluate and measure battery lifecycle.

sensors of various quantities should be placed at different measurement points which are usually exposed to greatest variation in temperature.

Since high-temperature cells are placed densely, a considerable amount of heat will accumulate at the center and less on the periphery, increasing the temperature imbalance between each two cells. As a result, battery modules and cells will differ from each other in performance, which will in turn impair the performance uniformity and service life of battery. Therefore, in an aging test of battery, real-time monitoring of temperature variation is a useful method for accurately evaluating the battery performance.

Battery Capacity Testing

Battery capacity is typically measured in ampere-hour. Measured battery capacities will differ with discharge rates applied. Generally, battery life will be shortened by high-rate discharge; thus, discharge capacity is usually measured at a low discharge rate (e.g. 0.2C). Meanwhile, battery tends to be damaged by deep discharge. Battery capacity refers to the effective capacity calculated from the initial voltage to the cut-off voltage.

ITECH ELECTRONICS Your Power Testing Solution

ITS5300 Battery Charge & Discharge Test System

Battery Charge/Discharge Performance Testing

By evaluating a battery's charge/discharge performance, we may effectively simulate the actual working conditions of the battery.

The charge process of a battery typically consists of four stages, including the preliminary charge, constant current charge, topping charge and trickle charge. During the discharge process, will not use continuous high current discharge. Therefore, simulation of variable pulse discharge current has become as a new tendency for developing novel battery charge/discharge testing systems. What's more, the simulation must be so flexible that it can satisfy various usage requirements of the user.

58

Modular Design

ITS5300 Test System is composed primarily of electronic load, power supply, IR tester and temperature logger.

By addressing the limitation of traditional single test, the system develops professional test steps to help users radically improve the testing efficiency. Moreover, the system software can be used to conduct a synchronous remote control of each system components.

With a modular design, the system allows users to select out of their true testing demands the most suitable devices for integration into an automated test platform, thus producing system architecture with highest flexibility and extendibility.

DC Electric Load

ITS5300 Test System includes an optional ITECH programmable DC electric load mainly used for battery discharge.

Serials	Voltage	Current	Power	Rensoulation
IT8500	0~500V	0~480A	120W~6KW	1mV/0.1mA
IT8800	0~800V	0~1500A	150W~600KW	0.1mV/0.01mA

IR Tester

ITS5300 Test System is provided with an optional ITECH IR tester used for monitoring the voltage and IR of cells in a battery pack.

The ITECH IR tester works with the most sophisticated AC discharge testing technology, capable of accurately measuring battery voltage and IR and having an automatic evaluation on battery parameters.

Professional System Software

ITS5300 Test System is equipped with a battery charge/discharge testing software developed on the basis of user specifications. By editing test steps, the user may perform constant current charge, constant Voltage charge and constant current/power resistance discharge tests on multi-channel cells or battery packs. Furthermore, the software will help the user monitor cell voltage, temperature and IR, produce charge/discharge curves and monitor and store relevant data.

Programmable DC Power Supply

ITS5300 Test System is supplied with an optional ITECH programmable DC power supply used for battery pack or cell charge.

Serials	Voltage	Current	Power	Rensoulation
IT6800	0~72V	0~10A	100W~180W	1mV/1mA
IT6900	0~150V	0~25A	100W~600W	1mV/0.1mA
IT6500	0~160V	0~240A	800W~6KW	1mV/1mA
IT6700	0~1200V	0~110A	850W~3KW	100mV/10mA

Temperature Logger

ITS5300 Test System integrates an ITECH multi-channel temperature logger used for temperature monitoring. ITECH multi-channel temperature logger is available for monitoring temperature via 24 channels at a time. The specifications of the temperature logger are as follows: measurement range -200°C - 2000°C, measurement accuracy 0.5°C and resolution 0.01°C.

The superior performance of temperature logger makes it possible for ITS5300 Test System to acquire temperature data effectively and accurately and for wide application of the system in testing of batteries of all kinds.

59 ITS5300 Battery Charge & Discharge Test System

Your Power Testing Solution

A Complete Set of Safety Features

Power-off Memory Protection

ITS5300 Test System is superior over traditional integrated charge & discharge device in which a power-off memory feature while the latter has single protection configuration only. Power-off memory feature is the most cutting-edge and perfect protection function developed by ITECH and designed for time-consuming aging tests. With the protection function, previously acquired data can be effectively stored intact in case of unexpected power off or computer crash during a time-consuming aging test and the user may proceed with the test program from the faulty link after the system back to normal. In this way, repeated tests are avoided for higher efficiency. Likewise, if the power-off state continues for long, the system will automatically cut off the active charge/discharge circuit so as to prevent overcharge and over-discharge and guarantee the safety and reliability of battery testing.

Complete Charge & Discharge Protection

During the aging test of battery, the user should

perform real-time monitoring of cells and battery pack and cut off the circuit for protection purposes when the preset conditions are satisfied so as to prevent overcharge and over-discharge. ITS5300 Test System allows the user to observe the status of battery pack and cells in all channels on the same interface and to present abnormality or normality of each cell using different colors. The system is designed with such protection features as cell under-voltage, overvoltage, over-temperature and battery pack overvoltage, under-voltage and reverse polarity.

User-defined Protection Conditions

The ITS5300 Test System allows for user-defined end-of-discharge conditions. All permissible parameters of the system can be used as limiting conditions for alarm and power-off protection. In case of satisfaction of any of such conditions, the system will stop discharge automatically.

ITECH ELECTRONICS Your Power Testing Solution

ITS5300 Battery Charge & Discharge Test System 60

Safety Protection Interface

ITS5300 Test System software has a dedicated safety protection interface that is given a priority in running over others during normal course of test so as to guarantee the safety and reliability of test.

Basic information		
🔃 Recording mode 🛛 😰 Alam function 🛛 🔝) Pictection 🔍 📺 F	arann.ess Range
□ Uver-voltage alerm of single cell	4.200	v
🔲 Undervotage alann of single riell	0.200	v
🗖 Over heat a arm of single cel	100.00	r
Finished		Exr.

Data Backup

ITS5300 Testy System allows the user to backup test date to the storage location so as to improve data safety and prevent data loss resulting from computer crash.

Configuration of User Access Rights

System operations mainly consist of editing and operation of test program and data analysis. For better controlling operation of the system by different personnel, the system is provided with the feature of user access rights configuration. With this feature, the user may assign QC, R&D and production personnel with different access right so as to prevent unauthorized modification or undesired artificial suspension of system program and in turn guarantee the system reliability and safety.

Ferricich	o	All pain to or 😨 Loci tranagamani	😨 – erdklare Conng	₹ %	en Lof
		🖉 Unionital Control	IVI Run biocram	W Data	1484)>>
List of user	-				

61 ITS5300 Battery Charge & Discharge Test System

Your Power Testing Solution

Various in Step Editing

ITS5300 Test System provides the users with an array of charge/discharge modes such as CC/CR/CP discharge mode and it can simulate CV/CC.

Various end-of-discharge conditions contribute to improvement of testing safety and prevention of over-discharge and overcharge of battery. The "AND" + "OR" logical relation may be established among time, capacity and voltage end-of-discharge conditions to cater to more complex testing requirements.

Multi-Battery Pack Simultaneous Testing

Hundreds of batteries are produced a day in a battery production line. So a multi-channel test system is required for testing many batteries at a time. ITS5300 Test System can divide a battery piece into 10 groups, each group configured with 200 measurement points. Different battery groups may be configured with different test programs but all channels in one group share the same test program, which simplifies the operation and improves the productivity. During the test, the user may clearly observe the test information of each channel on the software interface, including channel configuration, cell voltage, current, discharge capacity and other parameters, which is easy for observation and record. A battery pack is typically a set of cells connected in series which exhibit different characteristics during charge and discharge. For this reason, monitoring of cells is of great importance. Apart from key parameters of each channel, ITS5300 Test System may install a temperature logger and IR tester to realize real-time monitoring of cell voltage, IR and temperature. The software has intuitive colored block charts to symbolize normality or abnormality of cell characteristics and give early warning when necessary, which improves the testing reliability.

ITECH ELECTRONICS Your Power Testing Solution

ITS5300 Battery Charge & Discharge Test System

User-friendly and Powerful Edit Interface of Test Program

ITS5300 Test System software is equipped with a user-friendly user interface. The simple and compact edit interface allows you to execute complex test program without mastery of any programming language, making programming as easy as filling out documents.

62

Optimized Report and Analysis Functions

ITS5300 Test System is provided with a variety of data and curve display functions, allowing users to have a real-time check-up on steps during operation. Meanwhile, the system can generate IV curve and record cell voltage, current, temperature, IR and other parameters so that the user can produce desired charts and diagrams easily.

NP-29 IDennii: Ne han | hain | hain | hain | hann | hann | hann | hain | hain |

Export in EXCEL Format

Test results can be exported in EXCEL format for subsequent statistics and analysis.

26.21	E. 374	ALC: NO	2000	191	-4 816	IN OTHER	498.18	-
10.00	248	307	1,0066	a anno	0000	1	NEXT HOURS	1.0
		1004	1.1044	8 870P	10.000		MANUAL MARKED	
84		3007	3.3044	>004 4	40.0043	4	HAVE HOURS	
1875 - Lans		A#	1.000	1 P.O.S.	100.001		mapp range	1.1
4 780		D	F	F L	II	T	· · · · ·	
	ter Aurte o come		incent (II's	and trilled to		noise it admit	a leafare line .nt	and a l
	tore's			1.1855	2 2	2:00:70	2014/4/22 T ⁴	
WFX 3 2	600 dischur			6.0055	1 1	2:00:00		F (E:3":3
HL 1 3	SC/ charging			1.1852	1 1	3.0120		PLEIDES
1 4	16? discher,			((#55		1 00 20		C (F 38 7
	3¢7 chuzein			6, 6465	1 1	200130		+ CE (28) 3
T Å	107 dischart			((#55	1 (L	2200120	A 201 JOL/55 TH	
1 5				6.6855	1 1	2:00:20	4 581 9 44-35 T	
4 X	307 cherging							
	1.0. dizekar;			L.LHES	1 1	1900:20		- Lbedled
	SC7 charging			C. C#55	2 2	7:00:30		F CE:41:1
1: 10	\$ 07 dischart			C. CH53	1 1	1900:90		F (E:42:)
12 11	SC/ charging			1.1.852	1 1	.9.0120		P 15:4212
13 10	1.6? dischar,			0.0455	1.1	5 00 20		C (F 45)
14 18	307 chergins			C, CHE5))	2100120		+ CE (42) 3
36 34	100 dischar;			C. C#85	3 3	1900:20		· (2:00:1
16 15	SC/ cherging			r. ress	1 1	0.0001700		F FT :44:4
1. 10	6 O. dischary			L.LWSS	1 1	1600:520		- Lt:45:1
38 37	SC7 charging			C. C#55	> >	2:00:20	+ 2413/40/35 TA	
19 18	6 00 dischart		6.55*2	0.005))	1600:20		F (E:46:2
28 1A	\$\$7 charging			1,185	1 1	-0.0120		P LE 1941 :
51 00	1.6? dischar,	in \$ 4"#1	-6 59*7	6.045	1 1	5 (0) 20		C (E 45.7
22 21	297 disastar	35. 357	C. 5988	C, CH\$5))	0:00:20	1. 2019/4/22 1	C:452
53 <u>~</u>	1 CC dischar;	in 5.5"#5	-6.5877	C. CHES	2 2	1:00:20	BHLIMUSS TA	P (E:48:2
54 23	SC/ data in	15.337	£.5381	r. rass	1 1	1:00:20	12 201 4 44/35 T	F 117 :45: 1
15 24	6 QC dischary	in 1.1785	1.1376	L.LWSS	1 1	1:00:20	LE SULANGES TH	+ Lt:45:5
24 25	SC7 charging	35.997	C. 59#2	C. C#55	> >	1:00:IO	13 24L2/40/33 TH	F (5:58:3
5" 26	1.67 dischar.	in 8.5"#3	-6.53*2	(.(#5)))	1.00.20	19 2014/4/35 1 7	(0.50.)
					1 1	.100120		P LEIN.L.
59 28				6 (185	1 1	1400-90		
					1 1	1:00:20		
	25 26 1 10 1 10	25 SC7 charging 26 1.07 dischard 3 25 557 charging 3 25 1.07 dischard 3 25 1.07 dischard	25 507 charging 12, 597 20 4.00 discharging 12, 597 3 20 557 charging 12, 597 4 20 557 charging 12, 597 5 20 4.00 discharging 12, 597 4 20 557 charging 12, 597 5 20 557 charging 12, 597	25 507 charging 32, 597 6, 5942 20 405 discharzin 5, 593 -0, 597 3 20 597 charging 31, 597 -0, 597 4 20 405 discharzin 5, 593 -0, 597 3 20 597 charging 31, 597 0, 1592 4 20 597 charging 31, 597 0, 1592 5 20 407 charging 31, 597 0, 1592	25 SCV charging 32,397 C.5942 C.6953 20 400 dh.charcin E.5°40 -C.69°2 C.6653 3 21 SSV charging IE.8°40 -C.69°2 C.6653 4 21 SSV charging IE.8°40 -C.69°2 C.6653 4 21 SSV charging IE.8°40 -C.69°2 C.6653 4 22 400 dh.charging S <*45	25 SCV charging 32,397 C.5942 C.6955 0 0 7 26 405 discharden 5.5*0 -C.5952 C.6953 0 0 8 26 405 discharden 5.5*0 -C.5952 C.6953 0 0 8 26 557 charging JE.897 C.6953 0 0 8 26 557 charging JE.897 C.6953 0 0 9 28 100 discharging 5.5*15 -C.695 0 0	25 Set of charging 35,897 0.5982 0.6955 0 0 0.0010 * 20 4.05 dischardin 5.5°03 -0.5952 0.0853 0 0 5.000.00 * 20 4.05 dischardin 5.5°03 -0.5952 0 0 5.000.20 : 21 Style otherging 36.997 -0.5952 1.0855 0 0 5.000.20 : 21 Style otherging 36.997 0.1092 1 -0.00010 : 22 1.07 discharging 5.6°15 -0.1055 1 1 -0.00010	15 SCP changing 15,897 0.8982 0.0955 0 0.00000 15.29120002 T* 20 4.00 distance 5.5°0 -0.5°2 0.0053 0 0.00000 15.29120025 T* 20 4.00 distance 5.5°1 -0.5°2 0.0053 0 0.00000 15.29120025 T* 31 20 5%2 changing 36.997 0.1092 1.0002 1.29127021 T* 32 20 5%2 changing 36.997 0.1002 3

Data Query

Test data tables are named by date and time automatically and can be screened by different conditions for easy search.

ITS9500 Power Supply Test System

ITS9500 power supply test system is a convenient, practical and cost-efficient test system designed for switching power supply test. This system adopts a new scheme, overcoming the shortcomings of traditional test system, which is characterized by bulky size, high price, difficult to operate and maintain. Inside the 5U size, this system can provide test results superior to traditional large cabinet test system, thus saving the space as well as the cost for customers.

System Features

The standard 5U unit integrates electronic load, programmable AC power supply, programmable DC power supply, noise analyzer, timing analyzer, digital electric meter, oscilloscope, I/O card and other precision instruments, and can be installed on the counter top or inside a standard cabinet.

- Best cost-performance unit
- Modular design for easy maintenance
- High measurement precision
- Over 40 test items
- Simultaneous operation of six systems with one software
- A power supply unit which can test several single outputs at one time

Thanks to the extensive product line of ITECH, users can choose the most suitable instrument to build the ITS9500 test system based on their needs, thus providing the maximum flexibility and scalability for system architecture.

ITS9500 test system can be applied for tests of products such as power supply unit, LED-drive power battery charger and etc. The system provides over 40 test items and through the powerful automatic test software of ITS9500, users can select test items based on the characteristics of the device under test to easily complete the test process. The test software provides two types of user interface, the processional type and the simple type to easily meet varied demands of different users.

- Test program management/ editing function
- Statistic report output/editing function
- Multi-level authority setting function
 - User authority setting
 - System accesses record
- BarCodeReader supported by the software
- Optional external fixture for improving test speed
- Comply with the ENERGY STAR standard

Test Items

ITS9500 power test system provides complete test items for users, and different from traditional test system, users are not required to have program editing ability to operate the system. Users only have to choose the test items from over 40 test items provided by the system according to their needs and the system will complete the test process in order.

Input Test

- 1. Input power disturbance test
- 2. AC cycle drop out test
- 3. Input surge current test
- 4. Input RMS current test
- 5. Input peak current test
- 6. Input power factor test
- 7. Input voltage ramp test
- 8. Input frequency ramp test

Output Test

9. DC output voltage test 10. DC output current test

Protection Tests

- 20. OVP test
- 21. OL protection test
- 22. OPP test
- 23. Short circuit protection test
- 24. UV protection test

Time Series/Dynamic Tests

- 25. Turn on time 26. Turn off time 27. Rising time 28. Falling time 29. Transient spike test

Stability Test

- 32. Power effect test
- 33. Load effect test
- 34. Mixed effect test

Special Tests

- 35. Extended measurement test
- 36. Analog output control
- 37. PWM output control
- 38. Can bus read/write
- 39. GPIB read/write
- 40. RS232 read/write

- 11. Peak-peak noise test
- 12. RMS noise test
- 13. Current ripple test
- 14. Efficiency test
- 15. In-test adjustment test
- Power good signal(Power good)
- 17. Power fail signal(Power fail)
- 18. P/S ON signal
- 19. Overshoot voltage test

- 30. Attachment point timing test
- 31. Output voltage sequence (Tracking)
- 41. RS485 read/write
- 42. I2C read/write
- 43. TTL signal control
- 44. Relay control
- 45. Bar code scan
- 46. Quick charge 2.0 test

ITECH ELECTRONICS Your Power Testing Solution

Small Size And Cost-efficiency

ITS9500 power supply test system integrates all necessary instruments for integration switching power supply test in the limited space and is the smallest in size among similar products. It's different from traditional large and expensive power supply auto test system, can be used in production as well as R&D stages.

Easy Operation And Clear Result Display

ITS9500 test software, working together with the test system, can realize such functions as editing, operation, test, and data analysis of power test items.

ITS9500 test software supports Chinese and English and provides two types of user interface, the processional type and the simple type to easily meet various demands of different users.

The operation interface of the software is simple and clean with five distinctive function modules, and even users without programing ability can master the operation easily.

Modular Design And Easy Maintenance

ITS9500 power supply test system adopts modular design, forming an easy, and multifunctional power supply test platform. This facilitates future inspection and maintenance, and improve the production line.

The status of final test results, which is PASS or FAULT, will be highlighted on the interface to ensure a fast and accurate view for operators.

Flexible Choice To Meet Various Demands

Test item editing function

ITS9500 test system provides test item editing function. In addition to test items built-in the system, users can create new test items to meet test demands of all power supply units.

Users can also customize parameters and variables. ITS9500 system also supports filling common parameters for test items in the form of global variables in order to meet advanced test demands of users and to save test time.

Test program editing function

ITS9500 test system enables users to connect several edited test items to form a test program. The system will carry out test in order, thus significantly reducing the test time. Comprehensive And Variable Analysis Tools

Self-defined report template

ITS9500 test system supports users to save the test data in the form of a test report and the report format can be self-defined, thus significantly reducing time.

Report management

On the "Report Inquiry" interface of ITS9500 test system, user can inquire/edit/print reports by inputing the report number or scanning the bar code.

 Support simultaneous operation of several systems

One set of ITS9500 system test software can support simultaneous operation of six systems at maximum

Report inquiry and analysis function interface

Perfect And Safe Management System

Set user authority

"User management" enables users to set authorities for different users

Foligation	Cow System Log			-			
Tast Pas	Jan Jan	Dela User Managar		ant	Evens	tot h-re-	feat fra
	and charles in the same second	Connerts	•	Alles	Set Mine	Fet Ailer	For ALL
Report Lourch	and the second s	Meanin Paternal	***	ker	ALI+T	Allee	Alley
	amin i	Unin I Har Type	Comase Notr ·	100	aller	MIL or	Aller
lyrin Kaup		be.	Deat Frances Carlie Fact Irages Fablish East Line Policab Fardeers Sochie add				
				J			

ITECH ELECTRONICS Your Power Testing Solution

System log

The system log will record the login information of users, including user name, type, login/logoff time.

0					
Inicula	C for System				
	Ceas Inp	ide the fact 60 days F	ected		
Test Non	Part Date	Shee Tape	log.a Tom	lages. Trav	
	Pillin .	Admini I funtion	2014/3/10 (1:51:0)	accertatio recorde	
Report Loanst	Maria	Adeis Iturtor	00014/5/10 .0155 00	40.4/94.6 16:58:40	
	hiris.	Admini strutter	Martin'ss 14:08 13	2014/9/18 14:38:38	
100000000001	Maria	Administration	3004/3/10 2020120	2204/9/06 14:07:042	
Terr Grafty	abis.	Adeist coverse	3004/3/10 .4:38.05	20.4/9/.6.14:59.597	
	Main .	Adults! stantor	1004/5/15 14:00.05	2014/9/18 14:99:15	
Fundament Confine	Hein.	Adeast strator	1004/3/10 18.42 19	2004/19/08 14:480-98	
	Main	Administrative	9864-0710 (2:42.04	\$20.4/97.0 14:49.10	
and the second s	Mala .	Adaptive attention	20084-0710 (21:52:02	8214/5/10 10:58-58	
forms Lansier	Main	And the strategy	100424/00/10/12 08	077 4/10 ² 2, 17 (10-00)	
2000000000	Mara	Adex a stratter	1004/2/10 10:10:00	SCOUME PERCH	
	Maria	Administration	2010/0719 24:11:20	\$20.079/15 1.011.159	
	ndria .	Adelas Incensor	0006/0/10 .0:12 00	4004/9/10 14:18:00	
	Sile in	Advent strutter	MERCAN IN CALLS OF	SACROWING BRIDE INFO	
	Maria.	Administration	3004/2/50 w.06/00	2014/9/20 8 (08.4)	
	+bris.	Adelai rurener	9994/5/99 .0:12.03	20.4/9/20 14:12:45	
	Main.	Adolist standar	3004/5/30 20:12:58	2014/34/20 14 18:04	
	Hein	Adeans stantor	3494/3/30 10.18 11	2014/9/20 10:18:48	
	Main	Administration	9984-3/99 (0:12:22:2*	\$014/9/50 10:38048	
	Adda .	Administrator	9884-3798 (D-22-0)	\$21.4F3/80.18-29-05	

Test item/program management

Users can understand the release, review and edit of test items as well as the operation of test program.

ocal Submited	Published			
Test Iten Mane	Create Time	Lust Edit Time	Submit Status	Submit Result
	2014-09-16 11:56:49	2014-09-17 15:31:25	Published	
obb	2014-09-16 11:57:39	2014-09-17 15:31:52	Published	
(f f f	2014-00-18 10:17:26	2014-00-18 10:17:30	Submited	
€ [82			

High Performance Hardware Configuration

ITS9500 power supply test system adopts flexible hardware framework architecture integrating necessary hardware test devices, thus facilitating input cost control and test efficiency improvement

1, 2, 3 and 4 can be used for connecting OVP power supply, AC/DC power supply, electric load, switch analyzer, etc.

Hardware configuration

Through the "Hardware configuration" function, users can choose equipment from the instrument list to configure the system

Bertgalter	Test fastiers	6	+wil Stars	1				
Test 2.a.		-	Act Rations	-				
Bepro 1 Secolo	Upr Deutor	1	and the statement					
	avia tos	Design Bar	TAN	535	1948	inco D	Distantian .	Internet
Test Devise	Laslyan	1206				AMAGENTES	80210	1.80, All., .
	Ex Caeli	3%				2462002011	Miriz.	CONT. MINC. 2
Bardsone Config	81							
Preter Baaser	31							
	81							
	31							
			- Harrison La	initian in the second				
		_						

- 1. Scalable I/O
- 2. Relay output (10~16 IO Pin)
- 3. AC power input
- 4. USB communication interface

Programmable AC Power Supply

ITS9500 power supply test system's optional AC power supply can cover 300VA-3000VA power supply products.

With precision linear amplification technology, output of very pure AC power can be realized; distortion factor lower than 0.5%; simulate normal and abnormal AC inputs and measure key electrical performance parameters of device under test. Easy operation, perfect protection and self-diagnose function make it a reliable product for you.

DC Electronic Load

ITS9500 power supply test system's optional electronic load can cover 150W-500KW load products.

Four operating modes (CC, CV, CR, CP), meeting test demands of different power products; high speed and programmable dynamic load characteristics, testing the stability of power products; arbitrary waveform simulation function (LIST), observing whether the device under test can be operated normally in the application field; short current test function; sense function, ensuring accuracy of long distance measurement and perfect protection, your first choice for test.

Programmable DC Power Supply ITS9500 power supply test system's optional DC power supply can cover 100W-6KW power supply products.

Automatic gear technology, for regulating the voltage and current; high accuracy and high resolution, low ripple and low noise; LIST editing function, for application in the voltage drop test of DC-DC converter and inverter, battery charge and product life cycle test. It can be applied in the OVP test.

Switch Analyzer

Switch analyzer is an important part of hardware of ITS9500 power supply test system. This product integrates the product functions of oscilloscope, data acquisition card, IO card and power meter, thus facilitating performance tests of switching power supply and reducing cost and space for customers.

Your Power Testing Solution

Rich Optional Accessories

IT-E256	Extended keyboard
IT-E181	Power supply test system fixture
IT-E182	Power supply test system fixture
IT-E187	Relay card
IT-E190-6A	Current sensor
IT-E190-15A	Current sensor
IT-E190-25A	Current sensor

IT-E181 is a fixture which can work with ITS9500 test system to realize multiplechannel test. It can connect 4 test systems and test 4 devices under test with the same specification, thus significantly improving the production efficiency and reducing production cost for customers.

LED Drive Power Test

ITS9500 power supply system is the best test system for LED power as it can measure several devices under test at one time, thus significantly improving the capacity of production line.

The system is provided with test items for devices under test with performance optimization (LED drive power for lighting or backlight). Users only have to define test conditions and specifications on the standard test items for test.

Optimized test scheme covers the following 6 types of power test requirement: output characteristic test for detection of general performance of device under test; input characteristic test for detection of input parameters of power supply, protection test for testing the protection circuit which triggers the power supply; real-time and transient measurement of transient status of power supply at turn-on and turn-off, and voltage RMP time at turn-on and turn-off of measurement power; stability test for detection of stability of device under test during the change of input power and load; comprehensive test, providing test environment and other special functions.

IT-E181 supports test for several types of charger interface and visual display of test results or display of specific test data on the test interface are supported.

IT-E256 extended keyboard can be used for controlling the start and stop of ITS9500 system test program, avoid clicking mouse. The system is compact and easy to use, thus improving test efficiency.

Recommended Configuration

Measuring Range	LED Model
Power	300W
Output Voltage	500V

DC-DC Power Supply Test Solution

DC-DC power supply is widely used in military industry, communication equipment, vehicle, electronics and aerospace. ITS9500 test system is particularly suitable for high-efficient automatic test of DC-DC power. With the powerful function of ITS9500, stable and reliable test process can be realized and accurate test data can be obtained.

DC-DC Power Supply

Recommended Configuration

Measuring Range	LV Model	LV Economy Model	HV Model	
Power	250W	150W	300W	
Output Voltage	120V	72V	500V	

Recommended Configuration

Measuring Range	DC-DC Model	DC-DC Model
Power	250W	150W
Output Voltage	120V	72V

AC-DC Power Supply Test Solution

With continuous technological development, the application of AC-DC power supply also increases.

As AC-DC power supply will generate harmonic interference on input electric power, in turn, the harmonic wave of electric power will affect the electronic product. The disturbance test of ITS9500 power supply automatic test system is to test influence of power supply fluctuation, and is a good help for engineers.

Vehicle-mounted Charger Test Solution

ITS9500 test system is provided with automatic gear technology to regulate voltage and current with high accuracy and resolution, low ripple and noise. LIST editing function provides input/output characteristics, efficiency and protection item test for vehicle-mounted charger, thus greatly reducing test time.

Switching Power Supply

Recommended Configuration

Measuring Range	LV Model	LV Economy Model	HV Model
Input	250W	150W	300W
Output	120V	72V	500V

Standard Accessories

- AC Power Cord
- CD
- USB Cable
- **Optional Accessories**
- IT-E181
- IT-E182
- IT-E187
 - IT-E256
- IT-E190/6A/15A/25A/40A/60A

71 Solar Battery Test System

IT9380 Solar Battery Test System

IT9380 solar battery test system consisting of ITECH IT8700 ,IT8800 high-speed highprecision electronic loads and solar cell test software, can simulate different external conditions to test the parameters of each solar battery automatically.

As the ambient temperature and sunlight irradiance changing, the IV characteristics and conversion efficiency of the solar battery will change. When the ambient temperature goes up, the shape of I-V curve will change at the same time and filling factor will go down . Also the conversion efficiency will decline . The bigger sunlight irradiance , the bigger output power, the higher efficiency of the solar battery. All of the above factors have determined the IV characteristic of solar cells must be measured in a period of time to ensure the accuracy of the test results.

The computer is not included in the IT9380 product .
 Instruments configaration depends on customer's request .

IT9380 Can Test Parameters As Below

Ishort	Vp max
V open	lp max
Pmax	Rp max
FF	

Pmax=13.14W	lpmax=0.460A
Rpmax=62.12Ω	Ishort=0.615A
Vpmax=28.58V	Voc=31.57 V
FF=67.71%	

Solar Battery Model

Features

- Can be used with IT8700 or IT8800 series electronic loads
- Can be link to multiple electronic loads to realize multi-channel testing, easily to switch among different test interfaces
- Can set the time range and conduct a long time periodic test.
- Testing data real-time display and save function, and can be exported to EXCEL for follow-up analysis

Solar Battery Test System 72

IT9380 Support Long Term Periodic Testing

Besides single test,IT9380 support multiple tests,the testing time interval and time range are available to set. The software automatically scans the time interval as the preset process.

Sample time s	ettings	
Sample interval	8.0S	
Sample timing	Sample start at 13:00:00 🛨	Sample stop at 16:00:00

IT9380 Support Multi-sets Connection

IT9380 software supports multi-channel testing, it can monitor IT8700/IT8800 multichannel solar batteries testing by one computer and switch freely among the controlling interfaces.

IT9380 Testing Curve

Powerful Data Management Ability

IT9380 software has batch data preservation function, you can delete or export/save your testing data in the data management interface.

9912 Date 1	wapprant X			
netname	FeetTable0909PM2	-	Lister sheet	

Equipment name	IT8812 IT8818 💌
Channel name	Real time chart area V Current curve
IT8812 IT8818	
	8.0

IT9380 Support Multi-channel Simultaneously Testing

In multi-set connection,IT9380 software can simultaneously control electronic loads start or stop testing by clicking the "Start"/"Stop" after you set the data of each channel.

-	th conditions se	lecting							
R)	wie	2011- 5- 9	• •	2011- 9	9 🔹				
FI	Ime	15-49-00	× T	15.51.59	X				
Data	diapkay						101		
Seriel K). Date	Time	Isc	Voc	Pm	1pm	Vjens	Rs	rr.
4	2011-9-9	15:49:58	0.0E7A	26.407	0.00W	0.0574	0.00%	0.100	0.02%
5	2011-9-9	15:50:05	0.099A	26.419	ID. DOW	0.0594	0.004	0.100	0.02%
6	2011-9-9	15:50:15	0.096A	26.437	0.00W	0.0564	0.004	0.230	0.05%
7	2011-9-9	15:50:25	0.0E7A	26.441	0.00₩	0.0574	0.001	0.180	0.04%
8	2011-9-9	15:50:35	0.0%6A	-1. million	0.00W	0.0564	0.004	0.070	0.02%
9	2011-9-9	15:50:45	0.0E7A	26.469	0.00W	0.0544	0.054	0.110	0.02%
1D	2011-9-9	15:50:55	0.058A	26.487	D.DOW	4830.0	0.00%	0.070	0.02%
_	2011-9-9	15:51:05	0.0584	26.489	0.00W	0.0554	0.001	0.110	0.02%
11	2011-9-9	15:51:15	0.099A	26.497	0.00W	0.0594	0.054	0.140	0.03%
11 12	2011-9-9						0.009	0.040	0.01%
	2011-9-9	15-51-25	0.098A	26.504	0.00W	0.0554	0.004	0.045	0.01.11
12		15:51:25	0.098A 0.099A	26.50V	0.00W	0.0594	0.064	0.100	0.02%
12	2011-9-9	100 March 100		and the second sec					the second second

73 Optional Accessories

IT-E133GPIB communication cable, support SCPI protocol Applicable model: IT6800 series IT-E134GPIB communication cable, support SCPI protocol Applicable model: IT8500 series

IT-E135 GPIB communication cable, support SCPI protocol Applicable model: IT6100 series, IT6322

IT-E161 0-10V simulation interface cable for monitoring and setting Applicable model: IT6100 series

IT-E162 Digital interface calbe for monitoring and setting Applicable model: IT6100 series

IT-253 Keyboard Help IT8500 series electronic load to complete Auto-test function Applicable model: IT8500 series

IT-254 Keyboard Coordinating IT8500+ series electronic load to realize automatic testing fuction Applicable model:IT8500+ series IT-E163 0-10V simulation interface cable for monitoring and setting Applicable model: IT8500 series

IT-E31220-00 IT-E32420-00

IT-E301 Red & black wires with different specifications

IT-E30110-AB	10A / 1m/ Alligator clips - Banana plugs
IT-E30110-BB	10A /1m / Banana plugs - Banana plugs
IT-E30110-BY	10A /1m / Banana plugs - Y-type terminals
IT-E30312-YY	30A /1.2m / Y-type terminals - Y-type terminals
IT-E30320-YY	30A / 2m / Y-type terminals - Y-type terminals
IT-E30615-OO	60A/ 1.5m / Ring terminals - Ring terminals
IT-E31220-OO	120A / 2m / Ring terminals - Ring terminals
IT-E32410-OO	240A / 1m / Ring terminals - Ring terminals
IT-E32420-OO	240A / 2m / Ring terminals - Ring terminals
IT-E33620-OO	360A / 2m / Ring terminals - Ring terminals

IT-E121 RS232 Communication interface,with RS232 standard communication cable IT-E122 USB Communication interface,with USB standardcommunication cable Applicable models: IT6100, IT6800, IT6322, IT6302, IT8500+, IT8500

Optional Accessories 74

IT-E152 Rack mount kit Applicable model:IT8200 and IT6700 series

IT-E123 RS485 Communication interface,with RS485 interface Applicable models: IT8500+, IT8500, IT6800, IT6100, IT6322

IT-E153 Rack mount kit Applicable model:IT8700 series

IT-E151A 19 Rack mount kit Applicable model:IT6800, IT8500 (model: <1200W), IT6100, IT6800, IT6322 series, IT6700H(\leq 1500W). 1/2 2U Double units installation picture

75 Optional Accessories

IT-E181 Power testing system fixture (Realizing 4 channels synchronous testing) Applicable model:ITS9500

IT-E185 The testing fixture box (250V/15A) Applicable model:IT9121

IT-E190-15A Current sensor Applicable models:ITS9500,IT9121

IT-E190-25A Current sensor Applicable models:ITS9500,IT9121 IT-E190-40A Current sensor Applicable models:ITS9500,IT9121

IT-E190-60A Current sensor Applicable models:ITS9500,IT9121

Selection Guide 76

ITECH Products Selection Guide

* AC/DC Electronic Load		
IT8615 AC/DC Electronic Load	(Standard LAN/USB/GPIB interface)	
Model	Specification	
IT8615	50 - 420 V / 0 - 20 A / 1800 W	

* DC Electronic Load	
IT8700 Multi-channel Electronic Load	(Standard RS232/USB/GPIB/Ethernet interface)
Model	Specification
IT8731	80 V / 40 A / 200 W
IT8732	80 V / 60 A / 400 W
IT8732B	500 V / 20 A / 300 W
IT8733	80 V / 120 A / 600 W
IT8733B	500 V / 30 A / 500 W
IT8722	80 V / 20 A / 250 W * CH1 80 V / 20 A / 250 W * CH2 * 1
IT8723	80 V / 45 A / 300 W CH1 80 V / 45 A / 300 W CH2 * 1
IT8702	Mainframe for four modules
IT8703	Extended frame for four modules

*1: The total power of dual channel for IT8722 is 300W. *2: IT8731,IT8732,IT8732B,IT8733,IT8733B and IT8722 should be equipped with IT8702. *3: Main frame equips built-in RS232/USB/GPIB/Ether Net interface.

T8800 Multi-function Electronic Load	(Standard RS232/USB/GPIB interface)
Model	Specification
IT8811	120 V / 30 A / 150 W
IT8812	120 V / 30 A / 250 W
IT8812B	500 V / 15 A / 200 W
IT8812C	120 V / 60 A / 250 W
IT8813C	120 V /120A / 750 W
IT8813B	500 V / 30 A / 750 W
IT8814C	120 V / 240A / 1500W
IT8814B	500 V / 60 A / 1200 W
IT8816C	120 V / 480 A / 3000 W
IT8816B	500 V / 100 A / 2500 W
IT8817C	120 V / 600 A / 4500 W
IT8817B	500 V / 120 A / 3600 W
IT8818C	120 V / 720 A / 6000 W
IT8818B	500 V / 150 A / 5000 W
IT8818D	60 V / 700 A / 6000 W
IT8819H	800 V / 80 A / 7500 W
IT8830	120 V / 500 A / 10 KW
IT8830B	500 V / 200 A / 10 KW
IT8830H	800 V / 100 A / 10 KW
IT8831	120 V / 750 A / 15 KW
IT8831B	500 V / 300 A / 15 KW
IT8831H	800 V / 150 A / 15 KW
IT8832	120 V /1000 A / 20 KW
IT8832B	500 V / 400 A / 20 KW
IT8832H	800 V / 200 A / 20 KW
IT8833	120 V / 1500 A / 25 KW
IT8833B	500 V / 500 A / 25 KW
IT8833H	800 V / 250 A / 25 KW
IT8834B	500 V / 600 A / 30 KW
IT8834H	800 V / 300 A / 30 KW
IT8835B	500 V / 700 A / 35 KW
IT8835H	800 V / 350 A / 35 KW
IT8836B	500 V / 800 A / 40 KW
IT8836H	800 V / 400 A / 40 KW
IT8837B	500 V / 900 A / 45 KW
IT8837H	800 V / 450 A / 45 KW
IT8838B	500 V / 1000 A / 50 KW
IT8838H	800 V / 500 A / 50 KW
IT8839B	500 V / 1100 A / 55 KW
IT8839H	800 V / 600 A / 55 KW
*60KW-600KW is available	(Chandrad DC000/UCD/CDID interface
T8900 LED Electronic Load	(Standard RS232/USB/GPIB interface
Model	Specification
IT8912E	500 V / 15 A / 300 W
T8500+ Single Channel Electronic Load	(Optional RS232/USB/GPIB interface
Model	Specification
IT8511A+	150 V / 30 A / 150 W
IT8512A+	150 V / 30 A / 300 W
IT8512B+	500 V / 15 A / 300 W
IT8512H+	800 V / 5A / 300 W

IT8500+ Single Channel Electronic Load Model	(Optional RS232/USB/GPIB interfac Specification
IT8512C+	120 V / 60 A / 300 W
IT8513C+	120 V / 120 A / 600 W
IT8514B+	500 V / 60 A / 1500 W
IT8514C+	
	120 V / 240 A / 1500 W
IT8516C+	120 V / 240 A / 3000 W
IT8200 Economic Electronic Load	Cassification
Model	Specification
IT8211	60 V / 30 A / 150 W
* DC Power Supply	
IT6500 High Power Wide Range Power Supplies	
Model	Specification
IT6512/A	80V/60A/1200W
IT6513/A	150V/30A/1200W
IT6512C/D	80V/120A/1800W
IT6513C/D	200V/30A/1800W
IT6514C/D	360V/30A/1800W
IT6515C/D	500V/20A/1800W
IT6516C/D	750V/15A/1800W
IT6517C/D	1000V/10A/1800W
IT6522C/D	80V/120A/3KW
IT6523C/D	200V/60A/3KW
IT6524C/D	360V/30A/3KW
IT6525C/D	500V/20A/3KW
IT6526C/D	750V/15A/3KW 1000V/10A/3KW
IT6527C/D	
IT6532C/D	80V/240A/6KW
IT6533C/D IT6534C/D	200V/120A/6KW 360V/60A/6KW
IT6535C/D	500V/40A/6KW
IT6536C/D	750V/30A/6KW
IT6537C/D	1000V/20A/6KW
IT6542C/D	80V/360A/9KW
IT6543C/D	200V/180A/9KW
IT6544C/D	360V/90A/9KW
IT6545C/D	500V/60A/9KW
IT6546C/D	750V/45A/9KW
IT6547C/D	1000V/30A/9KW
IT6552C/D	80V/480A/12KW
IT6553C/D	200V/240A/12KW
IT6554C/D	360V/120A/12KW
IT6555C/D	500V/80A/12KW
IT6556C/D	750V/60A/12KW
IT6557C/D	1000V/40A/12KW
IT6562C/D	80V/600A/15KW
IT6563C/D	200V/300A/15KW
IT6564C/D	360V/150A/15KW
IT6565C/D	500V/100A/15KW
IT6566C/D	750V/75A/15KW
IT6567C/D	1000V/50A/15KW
IT6572C/D	80V/840A/21KW
IT6573C/D	200V/420A/21KW
IT6574C/D	360V/210A/21KW
IT6575C/D	500V/140A/21KW
IT6576C/D	750V/105A/21KW
IT6577C/D	1000V/70A/21KW
IT6582C/D	80V/960A/24KW
IT6583C/D	200V/480A/24KW
IT6584C/D	360V/240A/24KW
IT6585C/D	500V/160A/24KW
IT6586C/D	750V/120A/24KW
IT6587C/D	1000V/80A/24KW
IT6592C/D	80V/1200A/30KW
IT6593C/D	200V/600A/30KW
IT6594C/D	360V300A/30KW
IT6595C/D	500V/200A/30KW
IT6596C/D	750V/150A/30KW
IT6597C/D	1000V/100A/30KW

77 Selection Guide

T6900 Multi-function Power Supply	(Standard RS232/USB/GPIB interface)
Model	Specification
IT6922A	60 V / 5A / 100 W
IT6932A	60 V / 10 A / 200 W
IT6942A	60 V / 15 A / 360 W
IT6952A	60 V / 25 A / 600 W
IT6953A	150 V / 10 A / 600 W
IT6800 Power Supply	(Optional RS232/USB/GPIB interface)
Model	Specification
IT6821	18 V / 5 A / 90 W
IT6822	32 V / 3 A / 96 W
IT6823	72 V / 1.5 A / 108 W
IT6831	18 V / 10 A / 180 W
IT6832	32 V / 6 A / 192 W
IT6833	72 V / 3 A / 216 W
IT6834	150 V / 1.2 A / 180 W
IT6860A Dual-range Power Supply	(Standard RS232/USB interface)
Model	Specification
IT6861A	20 V / 5 A / 100 W 8 V / 9A /72W
IT6862A	32 V / 3 A / 96 W 12 V /6A/72W
IT6863A	72V/1.5A/108W 32V/3A/96W
IT6872A	35V/4A/140W 15V/7A/105W
IT6873A	75V/2A/150W 32V/4A/128W
IT6874A	150V/1.2A/180W 60V/2A/120W
IT6860B Dual-range Power Supply Model	(Standard RS232/USB/GPIB interface)
	Specification
IT6861B	20V/5A/100W 8V/9A/72W
IT6862B	32V/3A/96W 12V/6A/72W
IT6863B	72V/1.5A/108W 32V/3A/96W
IT6872B	35V/4A/140W 15V/7A/105W
IT6873A	75V/2A/150W 32V/4A/128W
IT6874A	150V/1.2A/180W 60V/2A/120W
	S232/USB/GPIB interface, IT6830B without GPIB interface)
Model	Specification
IT6831A	18 V / 10 A / 180 W
IT6832A	32 V / 6 A / 192 W
IT6833A	72 V / 3 A / 216 W
IT6100 High Accuracy Power Supply Model	(Optional RS232/USB/GPIB interface) Specification
IT6151	5.2 V / 60 A / 312 W
IT6152	20 V / 27 A / 540 W
IT6153	30 V / 18 A / 540 W
IT6154	60 V / 9 A / 540 W
IT6120B High Accuracy Power Supply	(Standard RS232/USB/GPIB interface)
Model	Specification
IT6121B	20 V / 5 A / 100 W
IT6122B	32 V / 3 A / 96 W
IT6123B	72 V / 1.2 A / 86 W
IT6132B	30 V / 5 A / 150 W
IT6133B	60 V / 2.5 A / 150 W
IT6160B High-power DC Power Supply	
Model	Specification
IT6162B	20V/50A/1000W
IT6164B	30V/40A/1200W 60V/20A/1200W
IT6300A Triple-Channel Power Supply	(Standard RS232/USB interface)
Model	Specification
IT6322A	30 V / 3 A / 90 W*2 CH
1103225	5 V / 3A / 15 W*1 CH
ITC222A	30 V / 6A/180W 2CH
IT6332A	5V/3A/15 W*1 CH
IT6333A	60 V/ 3 A / 180 W*2 CH

IT6300B Triple-Channel Power Supply	(Standard RS232/USB/GPIB interface
Model	Specification
IT6322B	30 V / 3 A / 90 W*2CH
116322B	5 V / 3 A / 15 W*1CH
IT6332B	30 V/6 A/180 W*2CH
1105526	5 V / 3 A/15 W*1CH
IT6222D	60 V/ 3 A/180 W*2CH
IT6333B	5 V / 3 A / 15 W*1CH
IT6302 Triple-Channel Power Supply	(Optional RS232/USB interface
Model	Specification
176202	30 V /3 A / 90 W*2 CH
IT6302	5 V/3 A / 15 W*1 CH
IT6700 Digital Control Power Supply	
Model	Specification
IT6720	60 V / 5 A / 100 W
IT6721	60 V / 8 A / 180 W
IT6722 DC Power Supply	(Standard RS232/USB/GPIB interface
IT6722	80 V / 20 A / 400 W
IT6722A	80 V / 20 A / 400 W 176722A without GPIB Interface
IT6700H High Voltage DC Power Supply	(Standard RS232/USB/GPIB interfac
Model	Specification
IT6723G	600 V / 5 A/ 850 W
IT6723B	150 V / 20 A / 850 W
IT6723C	32 V / 110 A /850 W
IT6723	80 V / 40 A/850 W
	300 V / 10 A / 850 W
IT6723H	
IT6724B	150 V/20 A / 1500 W 32 V/110 A / 1500 W
IT6724C	300 V/10 A / 1500 W
IT6724H	600 V/5 A / 1500 W
IT6724G	80V/40 A / 1500 W
IT6724	
IT6726B	160 V/40 A / 3000 W
IT6726H	300 V/20 A / 3000 W
IT6726G	600 V/10 A / 3000 W
IT6726V	1200 V /5 A / 3000 W
Bipolar DC Power Supp	ly
IT6412	±15V/±9V/±3A/±5A/45W
***	0-15V/0-9V/±3A/±5A/45W
*AC Power Supply	
IT7300 AC Power Supply Model	(Standard RS232/USB/LAN interface)
Model	Specification
IT7321	300V/3A/300VA
IT7322	300V/6A/750VA
IT7324	300V/12A/1500VA
IT7326	300V/24A/3000VA
IT7322H	500V/3A/750VA
IT7324H	500V/6A/1500VA
IT7326H	500V/12A/3000VA
*Power Analyzer	
IT9100 Power Analyzer	(Standard RS232/USB/GPIB/Ethernet interface
Model	Specification
IT9121	600V/20A

ООО "Техэнком" Контрольно-измерительные приборы и оборудование www.tehencom.com

All rights reserved @ ITECH This information is subject to change without notice. For more information on ITECH, please contact ITECH or your local ITECH distributor.

Your Power Testing Solution